Local augmentation based consistency learning for semi-supervised pathology image classification

计算机科学 人工智能 一致性(知识库) 正规化(语言学) 图像(数学) 模式识别(心理学) 上下文图像分类 机器学习
作者
Lei Su,Zhi Wang,Yi Shi,Ao Li,Minghui Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:232: 107446-107446 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107446
摘要

Labeling pathology images is often costly and time-consuming, which is quite detrimental for supervised pathology image classification that relies heavily on sufficient labeled data during training. Exploring semi-supervised methods based on image augmentation and consistency regularization may effectively alleviate this problem. Nevertheless, traditional image-based augmentation (e.g., flip) produces only a single enhancement to an image, whereas combining multiple image sources may mix unimportant image regions resulting in poor performance. In addition, the regularization losses used in these augmentation approaches typically enforce the consistency of image level predictions, and meanwhile simply require each prediction of augmented image to be consistent bilaterally, which may force pathology image features with better predictions to be wrongly aligned towards the features with worse predictions.To tackle these problems, we propose a novel semi-supervised method called Semi-LAC for pathology image classification. Specifically, we first present local augmentation technique to randomly apply different augmentations produces to each local pathology patch, which can boost the diversity of pathology image and avoid mixing unimportant regions in other images. Moreover, we further propose the directional consistency loss to enforce restrictions on the consistency of both features and prediction results, thus improving the ability of the network to obtain robust representations and achieve accurate predictions.The proposed method is evaluated on Bioimaging2015 and BACH datasets, and the extensive experiments show the superior performance of our Semi-LAC compared with state-of-the-art methods for pathology image classification.We conclude that using the Semi-LAC method can effectively reduce the cost for annotating pathology images, and enhance the ability of classification networks to represent pathology images by using local augmentation techniques and directional consistency loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助60
1秒前
gyl发布了新的文献求助10
1秒前
xxxx发布了新的文献求助10
2秒前
李李发布了新的文献求助10
3秒前
曲奇完成签到,获得积分10
3秒前
慕青应助liuzengzhang666采纳,获得10
4秒前
打打应助cherlia采纳,获得10
4秒前
Johnny完成签到,获得积分10
5秒前
Jasper应助喽喽采纳,获得10
5秒前
上官若男应助江屿采纳,获得10
6秒前
6秒前
9秒前
10秒前
兔子应助Larry1226采纳,获得10
11秒前
不加糖完成签到,获得积分10
12秒前
深海发布了新的文献求助10
12秒前
13秒前
大模型应助李明采纳,获得10
14秒前
14秒前
15秒前
tomato发布了新的文献求助10
15秒前
16秒前
兔子发布了新的文献求助10
16秒前
17秒前
可爱的函函应助宇宙法采纳,获得10
18秒前
fengfeng发布了新的文献求助10
18秒前
海鸥发布了新的文献求助10
19秒前
20秒前
20秒前
Orange应助tomato采纳,获得10
21秒前
科研通AI5应助aaa采纳,获得10
21秒前
21秒前
22秒前
22秒前
jhonnyhuang发布了新的文献求助10
22秒前
22秒前
爱在深秋完成签到,获得积分10
23秒前
4645发布了新的文献求助10
23秒前
pping驳回了vvA11应助
23秒前
科研通AI5应助木又权采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195764
求助须知:如何正确求助?哪些是违规求助? 3731392
关于积分的说明 11751874
捐赠科研通 3406045
什么是DOI,文献DOI怎么找? 1868742
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835549