Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity

体素 人工智能 分割 计算机科学 磁共振成像 基本事实 稳健性(进化) 模式识别(心理学) 计算机视觉 医学 生物 放射科 生物化学 基因
作者
Sean Rothenberger,Neal M. Patel,Jiacheng Zhang,Susanne Schnell,Bruce Α. Craig,Sameer A. Ansari,Michael Markl,Pavlos P. Vlachos,Vitaliy L. Rayz
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2360-2373 被引量:1
标识
DOI:10.1109/tmi.2023.3251734
摘要

We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期三的摸鱼怪完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
2秒前
yznfly举报瑶瑶求助涉嫌违规
2秒前
hbx123完成签到,获得积分20
2秒前
钟钟完成签到,获得积分10
2秒前
黑熊安巴尼完成签到,获得积分20
3秒前
科目三应助上善若水采纳,获得10
3秒前
LYH发布了新的文献求助10
3秒前
3秒前
chemwd完成签到,获得积分10
3秒前
仁爱金毛发布了新的文献求助10
3秒前
3秒前
luoqin发布了新的文献求助10
4秒前
所所应助涛声依旧采纳,获得10
4秒前
4秒前
五爷发布了新的文献求助10
4秒前
4秒前
Rita完成签到,获得积分10
5秒前
5秒前
samtol完成签到,获得积分10
5秒前
酷炫的海之完成签到,获得积分10
5秒前
skdfz168完成签到,获得积分10
6秒前
星空中的信完成签到,获得积分10
7秒前
PBB关闭了PBB文献求助
7秒前
7秒前
8秒前
8秒前
黑犬发布了新的文献求助10
8秒前
aaa完成签到,获得积分20
8秒前
派大星发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
脑洞疼应助阿浩采纳,获得10
10秒前
余功续发布了新的文献求助10
10秒前
疾风骤雨完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089