Knowledge integrated, deep neural network-based prediction of stress-strain curves of polymer matrix composites for AI-assisted materials design

极限抗拉强度 材料科学 人工神经网络 试验数据 拉伸试验 复合材料 弹性模量 材料性能 应变能 变形(气象学) 结构工程 计算机科学 人工智能 工程类 有限元法 程序设计语言
作者
Nagyeong Lee,Jae‐Wook Lee,Dongil Shin
出处
期刊:Computer-aided chemical engineering 卷期号:: 259-264
标识
DOI:10.1016/b978-0-323-85159-6.50043-9
摘要

In order to achieve an effective energy transition, development of new materials must be accompanied with the development of new and renewable energy facilities. However, to this day, material design is costly because material development relies on the designer's intuition. Therefore, for the competitiveness of material development, AI-based material design automation must be made through the combination and composition prediction of components. As the first step in the AI-based material reverse engineering system, this study predicts the mechanical properties and behavior of polymer matrix composites (PMC). The mechanical behavior of a material can be expressed from the strain-stress curve (S-S curve), and the deformation from the elastic section to the plastic section can be judged along with mechanical properties such as tensile strength, elastic modulus, and maximum load. Therefore, this study aims to predict the mechanical behavior of the PMC by learning the minimum tensile test data and information on the components for the two-component PMC based on the deep learning methodology. Through literature/data analysis, most features that can affect mechanical properties were classified into two predictive models. The first predictive model inputs tensile test data and chemical/mechanical properties, and outputs mechanical properties behavior. And the second prediction model predicts by inputting structural information of each components. Through SMILES of each components, MACCS key was obtained and converted to use functional group information and used as a feature. As a result of comparing the performance of the two predictive models, the second model required less material information than the model that did not learn structural information, and performed better. As a result, it is a model that predicts the behavior of the plastic section beyond the existing prediction model that stayed in the elastic modulus section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文关注了科研通微信公众号
刚刚
慕青应助starying采纳,获得10
刚刚
刚刚
小马完成签到 ,获得积分10
1秒前
1秒前
Lily完成签到,获得积分10
1秒前
123完成签到,获得积分20
1秒前
2秒前
余呀余完成签到 ,获得积分10
2秒前
爆米花应助淡然的小霸王采纳,获得10
2秒前
粗心小熊猫完成签到,获得积分10
2秒前
天真的冥王星完成签到,获得积分10
3秒前
Leucalypt完成签到,获得积分10
3秒前
storm完成签到 ,获得积分10
3秒前
cwm完成签到,获得积分10
3秒前
3秒前
3秒前
Pyrene完成签到,获得积分10
4秒前
W23完成签到,获得积分20
4秒前
柯同发布了新的文献求助10
5秒前
6秒前
6秒前
NexusExplorer应助sghpv采纳,获得10
6秒前
粗心的飞槐完成签到 ,获得积分10
6秒前
SAODEN完成签到,获得积分10
7秒前
一秒的剧情完成签到,获得积分10
7秒前
7秒前
zee发布了新的文献求助10
7秒前
ALU完成签到 ,获得积分10
7秒前
沉默思山完成签到,获得积分10
8秒前
taowang完成签到,获得积分10
8秒前
8秒前
8秒前
倩倩发布了新的文献求助10
8秒前
柯同完成签到,获得积分10
9秒前
DHB完成签到,获得积分10
9秒前
9秒前
张楠发布了新的文献求助10
10秒前
又声发布了新的文献求助10
10秒前
荷戟执子手完成签到,获得积分10
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733