Transfer Reinforcement Learning for Mixed Observability Markov Decision Processes with Time-Varying Interval-Valued Parameters and Its Application in Pandemic Control

可观测性 马尔可夫决策过程 强化学习 区间(图论) 计算机科学 控制(管理) 数学优化 大流行 马尔可夫链 马尔可夫过程 部分可观测马尔可夫决策过程 传输(计算) 数学 人工智能 2019年冠状病毒病(COVID-19) 机器学习 应用数学 统计 组合数学 病理 并行计算 传染病(医学专业) 医学 疾病
作者
Mu Du,Hongtao Yu,Nan Kong
出处
期刊:Informs Journal on Computing 卷期号:37 (2): 315-337 被引量:2
标识
DOI:10.1287/ijoc.2022.0236
摘要

We investigate a novel type of online sequential decision problem under uncertainty, namely mixed observability Markov decision process with time-varying interval-valued parameters (MOMDP-TVIVP). Such data-driven optimization problems with online learning widely have real-world applications (e.g., coordinating surveillance and intervention activities under limited resources for pandemic control). Solving MOMDP-TVIVP is a great challenge as online system identification and reoptimization based on newly observational data are required considering the unobserved states and time-varying parameters. Moreover, for many practical problems, the action and state spaces are intractably large for online optimization. To address this challenge, we propose a novel transfer reinforcement learning (TRL)-based algorithmic approach that ingrates transfer learning (TL) into deep reinforcement learning (DRL) in an offline-online scheme. To accelerate the online reoptimization, we pretrain a collection of promising networks and fine-tune them with newly acquired observational data of the system. The hallmark of our approach comes from combining the strong approximation ability of neural networks with the high flexibility of TL through efficiently adapting the previously learned policy to changes in system dynamics. Computational study under different uncertainty configurations and problem scales shows that our approach outperforms existing methods in solution optimality, robustness, efficiency, and scalability. We also demonstrate the value of fine-tuning by comparing TRL with DRL, in which at least 21% solution improvement can be yielded by TRL with fine-tuning for no more than 0.62% of time spent on pretraining in each period for problem instances with a continuous state-action space of modest dimensionality. A retrospective study on a pandemic control use case in Shanghai, China shows improved decision making via TRL in several public health metrics. Our approach is the first-ever endeavor of employing intensive neural network training in solving Markov decision processes requiring online system identification and reoptimization. History: Accepted by Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare. Funding: This work was supported in part by the National Natural Science Foundation of China [Grants 72371051 and 72201047] to the first and second authors and in part by the National Science Foundation [Grant 1825725] to the third author. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0236 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0236 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁柱发布了新的文献求助100
刚刚
WXY完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
桶装水精灵完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
单一完成签到,获得积分10
2秒前
NexusExplorer应助活泼的便当采纳,获得10
2秒前
4秒前
luyuheng95发布了新的文献求助10
4秒前
zby发布了新的文献求助10
4秒前
笔墨留香完成签到,获得积分10
5秒前
wang发布了新的文献求助10
5秒前
zzt发布了新的文献求助10
6秒前
6秒前
科研通AI6应助Wm200149采纳,获得10
6秒前
7秒前
虚心的清发布了新的文献求助10
7秒前
zyypdd完成签到,获得积分10
7秒前
ary完成签到 ,获得积分10
7秒前
76542cu发布了新的文献求助10
9秒前
阿衡发布了新的文献求助10
9秒前
深情安青应助笑笑笑采纳,获得10
10秒前
11秒前
11秒前
典雅碧空发布了新的文献求助10
11秒前
吃饱睡好发布了新的文献求助10
11秒前
11秒前
11秒前
CodeCraft应助米线ing采纳,获得10
12秒前
科研通AI6应助年轻迪奥采纳,获得10
12秒前
12秒前
脑洞疼应助xiaolv采纳,获得10
12秒前
12秒前
Robin发布了新的文献求助10
13秒前
赵飞燕完成签到,获得积分10
13秒前
追风少年发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406