Transfer Reinforcement Learning for Mixed Observability Markov Decision Processes with Time-Varying Interval-Valued Parameters and Its Application in Pandemic Control

可观测性 马尔可夫决策过程 强化学习 区间(图论) 计算机科学 控制(管理) 数学优化 大流行 马尔可夫链 马尔可夫过程 部分可观测马尔可夫决策过程 传输(计算) 数学 人工智能 2019年冠状病毒病(COVID-19) 机器学习 应用数学 统计 组合数学 病理 并行计算 传染病(医学专业) 医学 疾病
作者
Mu Du,Hongtao Yu,Nan Kong
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0236
摘要

We investigate a novel type of online sequential decision problem under uncertainty, namely mixed observability Markov decision process with time-varying interval-valued parameters (MOMDP-TVIVP). Such data-driven optimization problems with online learning widely have real-world applications (e.g., coordinating surveillance and intervention activities under limited resources for pandemic control). Solving MOMDP-TVIVP is a great challenge as online system identification and reoptimization based on newly observational data are required considering the unobserved states and time-varying parameters. Moreover, for many practical problems, the action and state spaces are intractably large for online optimization. To address this challenge, we propose a novel transfer reinforcement learning (TRL)-based algorithmic approach that ingrates transfer learning (TL) into deep reinforcement learning (DRL) in an offline-online scheme. To accelerate the online reoptimization, we pretrain a collection of promising networks and fine-tune them with newly acquired observational data of the system. The hallmark of our approach comes from combining the strong approximation ability of neural networks with the high flexibility of TL through efficiently adapting the previously learned policy to changes in system dynamics. Computational study under different uncertainty configurations and problem scales shows that our approach outperforms existing methods in solution optimality, robustness, efficiency, and scalability. We also demonstrate the value of fine-tuning by comparing TRL with DRL, in which at least 21% solution improvement can be yielded by TRL with fine-tuning for no more than 0.62% of time spent on pretraining in each period for problem instances with a continuous state-action space of modest dimensionality. A retrospective study on a pandemic control use case in Shanghai, China shows improved decision making via TRL in several public health metrics. Our approach is the first-ever endeavor of employing intensive neural network training in solving Markov decision processes requiring online system identification and reoptimization. History: Accepted by Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare. Funding: This work was supported in part by the National Natural Science Foundation of China [Grants 72371051 and 72201047] to the first and second authors and in part by the National Science Foundation [Grant 1825725] to the third author. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0236 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0236 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君君发布了新的文献求助10
1秒前
10秒前
10秒前
10秒前
棕熊熊关注了科研通微信公众号
11秒前
Claire发布了新的文献求助30
11秒前
14秒前
16秒前
17秒前
徐梦曦发布了新的文献求助10
18秒前
zero灬完成签到,获得积分10
18秒前
Boren完成签到,获得积分10
20秒前
20秒前
Ade完成签到,获得积分10
23秒前
小科发布了新的文献求助10
27秒前
迷你的书蕾完成签到 ,获得积分10
28秒前
30秒前
31秒前
31秒前
邱邵芸完成签到,获得积分10
32秒前
34秒前
35秒前
36秒前
慎独579发布了新的文献求助10
36秒前
麻辣烫烫发布了新的文献求助10
38秒前
脑洞疼应助drew采纳,获得10
39秒前
子爵木完成签到 ,获得积分10
41秒前
41秒前
joana发布了新的文献求助30
41秒前
辛勤的书兰完成签到,获得积分10
42秒前
Jasper应助wqx采纳,获得10
45秒前
46秒前
46秒前
NexusExplorer应助FG采纳,获得10
48秒前
hay完成签到,获得积分10
50秒前
59秒前
59秒前
深情安青应助momo采纳,获得10
1分钟前
1分钟前
FG发布了新的文献求助10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824330
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441843
捐赠科研通 3085924
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816411
科研通“疑难数据库(出版商)”最低求助积分说明 769640