Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iNk应助arsenal采纳,获得10
刚刚
晚湖完成签到,获得积分20
1秒前
洋洋洋完成签到,获得积分10
1秒前
传奇3应助pure采纳,获得10
1秒前
大模型应助雪白起眸采纳,获得10
1秒前
sean完成签到,获得积分10
1秒前
圈圈发布了新的文献求助10
1秒前
幼萱完成签到,获得积分10
1秒前
L柒完成签到 ,获得积分10
2秒前
aabsd发布了新的文献求助10
2秒前
彩色半梦完成签到,获得积分10
2秒前
fsm完成签到,获得积分10
2秒前
风中代柔完成签到 ,获得积分10
2秒前
lxfxlj发布了新的文献求助10
3秒前
何一非完成签到,获得积分10
3秒前
共享精神应助小雨采纳,获得10
3秒前
顾矜应助nyfz2002采纳,获得10
4秒前
健忘的念蕾完成签到,获得积分10
5秒前
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
MiLi发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
852应助科研通管家采纳,获得10
6秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792855
求助须知:如何正确求助?哪些是违规求助? 3337361
关于积分的说明 10284619
捐赠科研通 3054083
什么是DOI,文献DOI怎么找? 1675772
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761548