Clustering Weighted Envelope Spectrum for Rolling Bearing Fault Diagnosis

聚类分析 包络线(雷达) 方位(导航) 断层(地质) 结构工程 计算机科学 工程类 模式识别(心理学) 人工智能 地质学 电信 地震学 雷达
作者
Tao Chen,Liang Guo,Hongli Gao,Tingting Feng,Yaoxiang Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tase.2024.3403665
摘要

Spectral coherence (SCoh) is a powerful tool to reveal the hidden periodicities of signals, which has been widely used for rolling bearing fault diagnosis. However, most SCoh-based methods focus on searching a single demodulation band, which results in their inability to compound fault diagnosis and discrete frequency band localization. Moreover, many studies are conducted based on prior fault characteristic frequencies (FCFs), which limits their application in limited vision cases. To solve such issues, a prior knowledge-needless method namely clustering weighted envelope spectrum (CWES) is proposed for rolling bearing fault diagnosis. Firstly, based on the algorithms of peak searching and multiple relation checking, the potential FCFs (PFCFs) of each spectral frequency slice (SFS) of SCoh are automatically identified without any prior knowledge. The PFCFs of each SFS are regarded as its fault type label and are used to design a weight to evaluate its fault information abundance. Then, the SFSs with similar labels are clustered and other SFSs are ignored. Each cluster is considered to be associated with a potential cyclostationary component, and the importance of all clusters is sorted based on their maximum weights. Finally, to further enhance the fault characteristics, CWESs are defined as the weighted average of the SFSs in each top-ranked cluster. By using this method, the discrete informative frequency bands of multiple faults can be quickly located without prior FCFs and iterative optimization. The advantages of CWES over the state-of-the-art methods are validated by the experimental data of bearing single and compound faults. The results indicate that CWES has the best completeness in fault information extraction and the highest accuracy of fault diagnosis compared with other methods. Moreover, the robustness and computational efficiency of the proposed method are also advantageous. Note to Practitioners —This paper is motivated by the problems of discrete frequency band localization and compound fault separation in the field of rolling bearing fault diagnosis. Different from other prior FCF-oriented methods, we design a prior knowledge-needless algorithm to identify the PFCFs of each SFS of the SCoh. The PFCFs of each SFS can not only indicate the fault type but also quantify the abundance of fault information. Based on the identified PFCFs, several CWESs can be generated for fault diagnosis through the clustering algorithm and the weighted mechanism. Our experimental results show the proposed method has higher diagnostic accuracy than the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg发布了新的文献求助10
刚刚
完美的冰淇淋完成签到,获得积分10
1秒前
张教授发布了新的文献求助10
1秒前
我爱科研发布了新的文献求助10
1秒前
2秒前
嗯嗯嗯完成签到,获得积分10
2秒前
2秒前
2秒前
Lucas应助yy采纳,获得10
5秒前
6秒前
ting发布了新的文献求助10
6秒前
6秒前
窦嘉懿完成签到 ,获得积分10
7秒前
7秒前
Lucas应助gg采纳,获得10
8秒前
8秒前
隔壁老六发布了新的文献求助10
8秒前
lemon完成签到,获得积分10
8秒前
可爱的羽毛完成签到,获得积分10
9秒前
搞怪玩家发布了新的文献求助10
9秒前
wellshine完成签到,获得积分10
10秒前
sure完成签到 ,获得积分20
10秒前
爆米花应助sdl采纳,获得10
11秒前
白白嫩嫩发布了新的文献求助60
11秒前
12秒前
烂漫草莓完成签到,获得积分10
12秒前
12秒前
田様应助单薄的雪兰采纳,获得10
12秒前
13秒前
senyusing完成签到,获得积分10
13秒前
负责的靖琪完成签到 ,获得积分10
13秒前
EmmaLin完成签到,获得积分10
13秒前
李爱国应助淡然的衣采纳,获得10
13秒前
卓荦完成签到,获得积分10
14秒前
14秒前
Windfall发布了新的文献求助10
14秒前
宝海青完成签到,获得积分10
14秒前
桐桐应助莫道桑榆晚采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588