A machine learning analysis of predictors of future hypertension in a young population

人口 计算机科学 机器学习 人工智能 医学 环境卫生
作者
Özge Turgay Yıldırım,Mehmet Özgeyik,Selim Yıldırım,Başar Candemır
标识
DOI:10.23736/s2724-5683.24.06494-9
摘要

BACKGROUND: Early diagnosis of hypertension (HT) is crucial for preventing end-organ damage. This study aims to identify the risk factors for future HT in young individuals through the application of machine learning (ML) models.METHODS: The study included individuals aged 18-40 years who had not been diagnosed with HT through ambulatory blood pressure monitoring (ABPM). These participants were monitored for hypertension diagnosis from the date of ABPM application until the date of data collection. Hypertension prediction was carried out using three distinct ML methods: Support Vector Machine, Random Forest, and Least Absolute Shrinkage and Selection Operator. The identification of variables significant for future HT was based on the outcomes of these models.RESULTS: This study comprised 516 patients, with a mean follow-up duration of 793.4±58.6 days. Following the integration of demographic data, laboratory results, and ABPM findings into the ML models, age, high-density lipoprotein cholesterol, triglycerides, and the standard deviation of systolic blood pressure (SDsis) were identified as predictors for future HT. A logistic regression with the selected variables (age, diabetes mellitus history, HDL, triglycerides, white blood cell count, and SDsis) using the full data set gave the following log odds 0.0737 (P<0.001), 0.7146 (P<0.001), -0.0160 (P=0.071), 0.0026 (P=0.002), 0.0857 (P=0.069), and 0.0850 (P=0.005), respectively. The corresponding probability values of age, diabetes mellitus history, HDL, triglycerides, white blood cell count, and SDsis were 0.5184, 0.6714, 0.4960, 0.5006, 0.5214, and 0.5212, respectively. This indicates a unit increase in all factors, except diabetes mellitus history, increases the probability of future HT by 50%. A history of diabetes, however, increases the probability of future HT by more than two thirds. The history of diabetes mellitus emerged as the most crucial predictor of future HT across all applied methods.CONCLUSIONS: ML methods appear to be valuable tools for predicting future HT. The widespread adoption of these methods and the refinement of more comprehensive models will lay the groundwork for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心完成签到,获得积分10
1秒前
能干的邹完成签到 ,获得积分10
1秒前
雪生在无人荒野完成签到,获得积分10
1秒前
小赞完成签到,获得积分10
1秒前
1秒前
sdl发布了新的文献求助10
2秒前
Owen应助亦屿森采纳,获得10
3秒前
孙晓燕完成签到 ,获得积分10
3秒前
KKK发布了新的文献求助30
4秒前
5秒前
6秒前
晏詹完成签到,获得积分20
6秒前
6秒前
天天快乐应助烂漫的涔雨采纳,获得10
6秒前
咔嚓咔嚓发布了新的文献求助10
6秒前
ding应助完美怀亦采纳,获得10
7秒前
张流筝完成签到 ,获得积分10
7秒前
搜集达人应助HGZN采纳,获得10
8秒前
晏詹发布了新的文献求助10
9秒前
萱萱发布了新的文献求助10
9秒前
Lucas应助姜茶采纳,获得10
10秒前
沉静亿先完成签到,获得积分10
10秒前
11秒前
打打应助MR采纳,获得10
13秒前
任性黑裤发布了新的文献求助10
13秒前
zjy发布了新的文献求助10
13秒前
周稅完成签到,获得积分10
13秒前
16秒前
格拉希尔完成签到,获得积分10
16秒前
16秒前
钢之炼金术师完成签到 ,获得积分10
17秒前
Shirley完成签到 ,获得积分10
17秒前
林结衣完成签到,获得积分10
17秒前
whm完成签到,获得积分10
17秒前
18秒前
丘比特应助jojo采纳,获得10
18秒前
亦屿森发布了新的文献求助10
20秒前
ZHQ发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101021
求助须知:如何正确求助?哪些是违规求助? 3638822
关于积分的说明 11531248
捐赠科研通 3347580
什么是DOI,文献DOI怎么找? 1839704
邀请新用户注册赠送积分活动 906964
科研通“疑难数据库(出版商)”最低求助积分说明 824136