A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images

基础(证据) 癌症 医学 人工智能 计算机科学 内科学 地理 考古
作者
Zhaochang Yang,Ting Wei,Ying Liang,Xin Yuan,Ruitian Gao,Yujia Xia,Jie Zhou,Yue Zhang,Zhangsheng Yu
标识
DOI:10.1101/2024.05.16.594499
摘要

Abstract Computational pathology, utilizing whole slide image (WSI) for pathological diagnosis, has advanced the development of intelligent healthcare. However, the scarcity of annotated data and histological differences hinder the general application of existing methods. Extensive histopathological data and the robustness of self-supervised models in small-scale data demonstrate promising prospects for developing foundation pathology models. Due to the need for deployment, lightweight foundation models also need to be developed. In this work, we propose the BEPH ( BE iT-based model P re-training on H istopathological images), a general lightweight foundation model that leverages self-supervised learning to learn meaningful representations from 11 million unlabeled histopathological images. These representations are then efficiently adapted to various tasks, including 2 cancer patch-level recognition tasks, 3 cancer WSI-level classification tasks, and 6 cancer subtypes survival prediction tasks. Experimental results demonstrate that our model consistently outperforms several comparative models with similar parameters, even with limited training data reduced to 50%. Especially when the downstream structure is the same, the model can improve ResNet and DINO by up to a maximum increase of 8.8% and 7.2% (WSI level classification), and 6.44% and 3.28% on average (survival prediction), respectively. Therefore, BEPH offers a universal solution to enhance model performance, reduce the burden of expert annotations, and enable widespread clinical applications of artificial intelligence. The code and models can be obtained at https://github.com/Zhcyoung/BEPH . And currently, online fine-tuning of WSI classification tasks is available for use on http://yulab-sjtu.natapp1.cc/BEPH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
补药发布了新的文献求助10
刚刚
chum发布了新的文献求助10
刚刚
阿航完成签到,获得积分10
1秒前
雨葭完成签到,获得积分10
1秒前
Hannah完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
笨笨的怜南完成签到,获得积分10
3秒前
机会完成签到,获得积分10
3秒前
li完成签到,获得积分10
3秒前
雪糕完成签到,获得积分10
4秒前
zhou默发布了新的文献求助10
5秒前
桐桐应助YJJ采纳,获得10
6秒前
6秒前
秀儿发布了新的文献求助10
6秒前
6秒前
7秒前
顾矜应助RP-H采纳,获得10
7秒前
8秒前
陈宝妮完成签到,获得积分10
8秒前
8秒前
善良的火完成签到 ,获得积分10
8秒前
Sten完成签到,获得积分10
8秒前
Owen应助Vvvnnnaa1采纳,获得10
9秒前
Tonald Yang发布了新的文献求助10
10秒前
善学以致用应助ghdltkdtn56采纳,获得10
11秒前
辛勤的背包完成签到,获得积分10
11秒前
Sten发布了新的文献求助10
11秒前
wanci应助Wjzhen采纳,获得10
13秒前
13秒前
545完成签到,获得积分10
14秒前
无奈冥完成签到,获得积分10
15秒前
英俊的铭应助Hannah采纳,获得10
15秒前
16秒前
英俊的铭应助杨晓白采纳,获得10
16秒前
16秒前
科研通AI5应助风华正茂采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070341
求助须知:如何正确求助?哪些是违规求助? 4291451
关于积分的说明 13370479
捐赠科研通 4111769
什么是DOI,文献DOI怎么找? 2251670
邀请新用户注册赠送积分活动 1256789
关于科研通互助平台的介绍 1189429