Modeling the discharge coefficient of labyrinth sluice gates using hybrid support vector regression and metaheuristic algorithms

物理 算法 元启发式 支持向量机 人工智能 计算机科学
作者
Aliasghar Azma,Alistair G.L. Borthwick,Reza Ahmadian,Yakun Liu,Di Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (4) 被引量:15
标识
DOI:10.1063/5.0260738
摘要

Gates and weirs are frequently used hydraulic structures employed for controlling water flow rates in irrigation and drainage networks. Therefore, accurately estimating the discharge coefficient (Cd) is important for precise flow measurement. The present study used intelligent predictive models for modeling Cd in labyrinth sluice gates. For this purpose, key dimensionless parameters and reliable experimental datasets were used. The support vector regression (SVR) model was hybridized with particle swarm optimization (PSO) and genetic algorithms (GA). The statistical metrics and graphical plots evaluated the performance of the generated models. Three commonly used statistical indicators, namely root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), were used for quantitatively evaluating the performance of the proposed models. The SVR-PSO model achieved the lowest values of RMSE (0.0287) and MAE (0.0209) and the highest value of R2 (0.9732), indicating that it was more accurate than SVR-GA (RMSE = 0.0324, MAE = 0.0257, R2 = 0.9685) and SVR (RMSE = 0.0575, MAE = 0.0468, R2 = 0.8958) on the testing data. The findings revealed that the hybrid SVR methods were more accurate than the standalone SVR model. In addition, regarding the value of the objective function criterion (OBF), the SVR-PSO (OBF = 0.0245) and SVR-GA (OBF = 0.0273) had lower OBF values and provided more precise estimates of the Cd compared to existing nonlinear regression-based formulas and existing data-driven approaches. Finally, sensitivity and SHapley Additive exPlanations (SHAP) analyses determined the relative importance of each input variable for the prediction of Cd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cryer2401完成签到,获得积分10
1秒前
1秒前
wang完成签到,获得积分10
2秒前
Ava应助忐忑的板栗采纳,获得10
3秒前
彭于晏应助余南采纳,获得10
3秒前
伶俐的冰之完成签到,获得积分10
5秒前
香蕉觅云应助bzlish采纳,获得10
5秒前
勤恳问薇发布了新的文献求助10
5秒前
7秒前
希望天下0贩的0应助Nin采纳,获得10
8秒前
9秒前
Dalu888完成签到,获得积分10
10秒前
科研通AI6应助111采纳,获得10
11秒前
每天发布了新的文献求助10
12秒前
lingudu完成签到 ,获得积分10
13秒前
雨下整夜完成签到,获得积分10
13秒前
风趣的慕灵完成签到 ,获得积分10
15秒前
科研通AI6应助小张同学采纳,获得10
19秒前
Lucas应助小张同学采纳,获得10
19秒前
仲谋发布了新的文献求助10
19秒前
20秒前
小白鼠完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
hyx完成签到 ,获得积分10
22秒前
23秒前
juqiu发布了新的文献求助10
23秒前
24秒前
领导范儿应助Freya采纳,获得10
25秒前
25秒前
沉默的盼夏完成签到,获得积分10
27秒前
赘婿应助文献文献采纳,获得10
28秒前
自由的梦露完成签到 ,获得积分10
29秒前
仲谋发布了新的文献求助10
29秒前
浮游应助科研通管家采纳,获得10
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
orixero应助科研通管家采纳,获得10
30秒前
破晓发布了新的文献求助10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
wanci应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642782
求助须知:如何正确求助?哪些是违规求助? 4759753
关于积分的说明 15018871
捐赠科研通 4801267
什么是DOI,文献DOI怎么找? 2566588
邀请新用户注册赠送积分活动 1524567
关于科研通互助平台的介绍 1484100