Real-time integrated modeling of soft tissue deformation and stress based on deep learning

计算机科学 规范化(社会学) 有限元法 非线性系统 计算 人工神经网络 多尺度建模 人工智能 算法 物理 生物信息学 工程类 结构工程 社会学 生物 人类学 量子力学
作者
Ziyang Hu,Shenghui Liao,Xiaoyan Kui,Renzhong Wu,Feng Yuan,Qiuyang Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (12): 125007-125007
标识
DOI:10.1088/1361-6560/adde0d
摘要

Abstract Objective . Accurately and in real-time simulating soft tissue deformation and visualizing stress distribution are crucial for advancing surgical simulators closer to real surgical environments. The concept of using neural networks to accelerate the finite element method has emerged as a powerful approach for real-time physical modeling of soft tissues due to its excellent performance. However, existing models primarily focus on deformation modeling, neglecting the important guiding role of soft tissue stress field modeling in surgical training. Moreover, when modeling multiple physical fields, the vast differences in data distribution between these fields can cause a model to become biased toward features with larger scales if they are simply concatenated and fed into the network for training. This paper aims to address the issue of missing stress rendering in surgical simulators by developing a neural network-based real-time multi-physics modeling framework for soft tissues. Approach . By compactly encoding the nonlinear relationship between soft tissue boundary conditions and physical fields, the method accelerates the computation of deformation and stress fields. The feature scales of the physical fields are balanced using Z -Score normalization, which mitigates the problem of large-scale features dominating the model training. Main results . We validated the effectiveness of our method on three-dimensional models of a cantilever beam, liver, spleen, and kidney. Experiments demonstrate that our method achieves an excellent balance between efficiency and accuracy. Compared to traditional methods, it offers a 1000-fold or even 10 000-fold improvement in efficiency with only around a 1% loss in accuracy. Significance . The proposed model effectively predicts the displacement and stress distribution of soft tissue, offering the potential to enhance surgical simulators with the capability to render multiple physical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助JM采纳,获得10
1秒前
1秒前
3秒前
chen完成签到,获得积分10
5秒前
111版发布了新的文献求助10
5秒前
张艺完成签到,获得积分10
5秒前
6秒前
9秒前
9秒前
曾志伟发布了新的文献求助10
9秒前
传奇3应助睡不醒的网采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI2S应助JM采纳,获得10
10秒前
香蕉觅云应助笨笨翰采纳,获得10
11秒前
12秒前
佳佳发布了新的文献求助10
13秒前
13秒前
13秒前
DQY发布了新的文献求助10
14秒前
14秒前
SAAAAAAA完成签到,获得积分20
15秒前
leo发布了新的文献求助10
16秒前
在水一方应助llinuu采纳,获得10
17秒前
念一发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
20秒前
一个头两个大完成签到,获得积分10
22秒前
霍小美发布了新的文献求助10
23秒前
25秒前
zbzfp发布了新的文献求助10
26秒前
26秒前
苹果颖完成签到,获得积分10
27秒前
慕青应助念一采纳,获得10
28秒前
呜哈哈完成签到 ,获得积分10
28秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
33秒前
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696091
求助须知:如何正确求助?哪些是违规求助? 5105380
关于积分的说明 15218112
捐赠科研通 4852172
什么是DOI,文献DOI怎么找? 2602992
邀请新用户注册赠送积分活动 1554614
关于科研通互助平台的介绍 1512681