作文(语言)
对偶(语法数字)
表征(材料科学)
双重能量
肾结石
计算机科学
医学
内科学
材料科学
艺术
纳米技术
骨矿物
文学类
骨质疏松症
作者
Picha Shunhavanich,Andrea Ferrero,Cynthia H. McCollough,Scott S. Hsieh
标识
DOI:10.1016/j.acra.2024.10.025
摘要
Classification of non-uric acid (NUA) renal stones in dual-energy CT (DECT) is difficult due to their similar CT number ratios (CTRs) and because the CTRs change with patient size and acquisition protocol. In this work, we developed a generalizable framework to estimate correct CTR threshold for different stone types, protocols, and patient sizes and validated the results on two DECT scanners.
科研通智能强力驱动
Strongly Powered by AbleSci AI