Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges

课程 图书馆学 工程教育 引用 工程类 医学教育 心理学 医学 计算机科学 教育学 工程管理
作者
Muhsin Menekşe
出处
期刊:Journal of Engineering Education [Wiley]
卷期号:112 (3): 578-582 被引量:13
标识
DOI:10.1002/jee.20539
摘要

Journal of Engineering EducationVolume 112, Issue 3 p. 578-582 GUEST EDITORIAL Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges Muhsin Menekse, Corresponding Author Muhsin Menekse [email protected] orcid.org/0000-0002-5547-5455 School of Engineering Education, Purdue University, West Lafayette, Indiana, USA Department of Curriculum and Instruction, Purdue University, West Lafayette, Indiana, USA Correspondence Muhsin Menekse, School of Engineering Education, Purdue University, West Lafayette, IN, USA. Email: [email protected]Search for more papers by this author Muhsin Menekse, Corresponding Author Muhsin Menekse [email protected] orcid.org/0000-0002-5547-5455 School of Engineering Education, Purdue University, West Lafayette, Indiana, USA Department of Curriculum and Instruction, Purdue University, West Lafayette, Indiana, USA Correspondence Muhsin Menekse, School of Engineering Education, Purdue University, West Lafayette, IN, USA. Email: [email protected]Search for more papers by this author First published: 20 June 2023 https://doi.org/10.1002/jee.20539Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K–12 settings. AI Ethics, 2, 431–440. https://doi.org/10.1007/s43681-021-00096-7 Alevin, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016). Instruction based on adaptive learning technologies. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 522–560). Routledge. ISBN: 113883176X. Balakrishnan, B., & Long, C. Y. (2020). An effective self-directed personalized learning environment for engineering students during the COVID-19 pandemic. Advances in Engineering Education, 8(4), 1–8. Bearman, M., Boud, D., & Ajjawi, R. (2020). New directions for assessment in a digital world. In M. Bearman, P. Dawson, R. Ajjawi, J. Tai, & D. Boud (Eds.), Re-imagining university assessment in a digital world (pp. 7–18). The enabling power of assessment (Vol. 7). Springer. https://doi.org/10.1007/978-3-030-41956-1_2 Chase, C. C., Chin, D. B., Oppezzo, M. A., & Schwartz, D. L. (2009). Teachable agents and the Protégé effect: Increasing the effort towards learning. Journal of Science Education and Technology, 18(4), 334–352. https://doi.org/10.1007/s10956-009-9180-4 Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, T. (2001). Learning from human tutoring. Cognitive Science, 25(4), 471–533. https://doi.org/10.1016/S0364-0213(01)00044-1 Chou, C. Y., & Chan, T. W. (2016). Reciprocal tutoring: Design with cognitive load sharing. International Journal of Artificial Intelligence in Education, 26, 512–535. Dawani, S. (2023). Integrating artificial intelligence into creativity education: Developing a creative problem-solving course for higher education. Creative Studies Graduate Student Master's Projects. https://digitalcommons.buffalostate.edu/creativeprojects/363 Duran, D., & Topping, K. J. (2017). Learning by teaching: Evidence-based strategies to enhance learning in the classroom. Routledge. Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Gutiérrez, C. G., Hurtado, S., John, G. H., Matsui, J., McGee, R., Okpodu, C. M., Robinson, T. J., Summers, M. F., Werner–Washburn, M., & Zavala, M. (2016). Improving underrepresented minority student persistence in STEM. CBE—Life Sciences Education, 15(3), es5. https://doi.org/10.1187/cbe.16-01-0038 Fan, X., Luo, W., Menekse, M., Litman, D., & Wang, J. (2015). Course MIRROR: enhancing large classroom instructor-student interactions via mobile interfaces and natural language processing. Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '15) (pp. 1473–1478). Association for Computing Machinery. https://doi.org/10.1145/2702613.2732853 Huang, K. (2023). Alarmed by AI chatbots, universities start revamping how they teach. New York Times. https://www.nytimes.com/2023/01/16/technology/chatgpt-artificial-intelligence-universities.html Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Kasneci, E., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., … Kasneci, G. (2023). Chat GPT for good? on opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 Koretsky, M. D., Amatore, D., Barnes, C., & Kimura, S. (2008). Enhancement of student learning in experimental design using a virtual laboratory. IEEE Transactions on Education, 51(1), 76–85. Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty's brain system. International Journal of Artificial Intelligence in Education, 18(3), 181–208. Luo, W., Fan, X., Menekse, M., Wang, J., & Litman, D. (2015). Enhancing instructor-student and student-student interactions with mobile interfaces and summarization. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (pp. 16–20, May 31 – June 5, 2015). https://doi.org/10.3115/v1/N15-3004 Menekse, M. (2020). The reflection-informed learning and instruction to improve students' academic success in undergraduate classrooms. The Journal of Experimental Education, 88(2), 183–199. https://doi.org/10.1080/00220973.2019.1620159 Menekse, M., Anwar, S., & Akdemir, Z. G. (2022). How do different reflection prompts affect engineering students' academic performance and engagement? The Journal of Experimental Education, 90(2), 261–279. Menekse, M., Anwar, S., & Purzer, S. (2018). Self-Efficacy and mobile learning technologies: A case study of course MIRROR. In C. Hodges (Ed.), Self-efficacy in instructional technology contexts. Springer. https://doi.org/10.1007/978-3-319-99858-9_4 Menekse, M., Stump, G., Krause, S., & Chi, M. T. H. (2013). Differentiated overt learning activities for effective instruction in engineering classrooms. Journal of Engineering Education, 102(3), 346–374. https://doi.org/10.1002/jee.20021 Miller, R. L., Streveler, R. A., Yang, D., & Santiago Román, A. I. (2011). Identifying and repairing student misconceptions in thermal and transport science: Concept inventories and schema training studies. Chemical Engineering Education, 45(3), 203–210. Mollick, E. R., & Mollick, L. (2023). Using AI to implement effective teaching strategies in classrooms: five strategies, including prompts (March 17, 2023). Available at SSRN: https://ssrn.com/abstract=4391243 or https://doi.org/10.2139/ssrn.4391243 Nie, J., Yuan, Y., Chao, X., Li, Y., & Lv, L. (2023). In smart classroom: Investigating the relationship between human–computer interaction, cognitive load and academic emotion. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2023.2190257 Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G. M., Grundy, S., Lyden, S., Neal, P., & Sandison, C. (2023). ChatGPT versus engineering education assessment: A multidisciplinary and multi-institutional benchmarking and analysis of this generative artificial intelligence tool to investigate assessment integrity. European Journal of Engineering Education. https://doi.org/10.1080/03043797.2023.2213169 OpenAI. (2023). GPT-4 technical report. https://arxiv.org/pdf/2303.08774.pdf Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009–2019. Journal of Science Education and Technology, 30, 16–30. Roscoe, R. D., & Chi, M. T. (2007). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors' explanations and questions. Review of Educational Research, 77(4), 534–574. Streveler, R., & Menekse, M. (2017). Taking a closer look at active learning. Journal of Engineering Education, 106(2), 186–190. https://doi.org/10.1002/jee.20160 Sun, L., Wei, M., Sun, Y., Suh, Y. J., Shen, L., & Yang, S. (2023). Smiling women pitching down: Auditing representational and presentational gender biases in image generative AI. arXiv preprint arXiv:2305.10566. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. U.S. Department of Education. (2023). Artificial intelligence and future of teaching and learning: Insights and recommendations. Office of Educational Technology. https://tech.ed.gov/ai-future-of-teaching-and-learning/ Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. Walker, E., Rummel, N., & Koedinger, K. R. (2015). Adaptive intelligent support to improve peer tutoring in algebra. International Journal of Artificial Intelligence in Education, 24, 33–61. https://doi.org/10.1007/s40593-013-0001-9 Volume112, Issue3July 2023Pages 578-582 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李金奥完成签到 ,获得积分10
刚刚
高高完成签到,获得积分0
刚刚
alee完成签到,获得积分10
1秒前
1秒前
爆米花应助Luna采纳,获得10
1秒前
芋泥果冻完成签到,获得积分10
1秒前
泡芙完成签到 ,获得积分10
1秒前
庄严发布了新的文献求助10
1秒前
1秒前
定海神金完成签到,获得积分10
2秒前
2秒前
唐一完成签到,获得积分10
2秒前
Xue发布了新的文献求助10
3秒前
3秒前
小胡完成签到,获得积分10
3秒前
留溪月完成签到,获得积分10
3秒前
默默善愁发布了新的文献求助10
4秒前
Joy完成签到,获得积分10
4秒前
科目三应助张承昊采纳,获得10
4秒前
chuiji完成签到,获得积分10
5秒前
螺旋飞天放屁完成签到,获得积分10
5秒前
每念至此完成签到,获得积分10
5秒前
FRIGHTINGx完成签到 ,获得积分10
5秒前
帅气蓝发布了新的文献求助10
5秒前
dry完成签到,获得积分10
5秒前
sky完成签到,获得积分10
5秒前
星星完成签到,获得积分10
5秒前
6秒前
6秒前
Running完成签到 ,获得积分10
6秒前
6秒前
jiaxiangxia完成签到 ,获得积分10
6秒前
Dr.V完成签到,获得积分10
7秒前
7秒前
欢呼海露发布了新的文献求助10
7秒前
磕了送发布了新的文献求助10
7秒前
华仔应助justonce采纳,获得10
7秒前
程馨发布了新的文献求助30
7秒前
8秒前
正直的念梦完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256834
求助须知:如何正确求助?哪些是违规求助? 4419081
关于积分的说明 13754519
捐赠科研通 4292230
什么是DOI,文献DOI怎么找? 2355404
邀请新用户注册赠送积分活动 1351852
关于科研通互助平台的介绍 1312634