Study of Regression Algorithms and Influent Factors between Intelligent Compaction Measurement Values and In-Situ Measurement Values

路基 压实 线性回归 算法 岩土工程 回归分析 工程类 数学 统计
作者
Jinsong Pang,Jingli Yang,Bin Zhu,Jinsong Qian
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (10): 5953-5953 被引量:10
标识
DOI:10.3390/app13105953
摘要

Intelligent compaction (IC) technology have been used for quality control and quality assurance (QC/QA) in subgrade construction. The effective regression correlations between Intelligent Compaction Measurement Values (ICMV) and In-situ Measurement Values (ISMV, including compaction degree and subgrade modulus ELWD) are the essential prerequisite of using IC technology for QC/QA. This paper presents the results from an experimental research study that was conducted from a practical subgrade project of China to explore the regression relationships between ICMV and ISMV. Three types of ICMV, including CMV, CCV and Evib, were collected along with the corresponding positions of the rollers. Two types of ISMV, containing compaction degree and ELWD, were measured by ring sampler method and light weight deflectometer (LWD) at specified test points, respectively. Based on these data, the influences of roller parameters and subgrade properties on the regression relationships of ICMV and ISMV were investigated. In addition, linear regression and 5 nonlinear regression algorithms were compared. The results suggest that ICMV reflect the stiffness of subgrade more than reflecting the density. In the regression of ICMV and ISMV, subgrade properties are more important than roller parameters while both of them should not be neglected. The influences of underlying stiffness and roller amplitude are linear while that of roller speed and moisture content are nonlinear. Nonlinear algorithms, especially the random forest, have the better performance compared to linear algorithm. Moreover, the combination of random forest and linear algorithm can further improve the accuracy of ISMV prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12121发布了新的文献求助10
刚刚
Kenny发布了新的文献求助10
1秒前
syy080837发布了新的文献求助10
3秒前
星辰大海应助埃森采纳,获得10
7秒前
Kenny完成签到,获得积分10
9秒前
学术混子雷雷雷雷雷完成签到,获得积分10
12秒前
huang完成签到,获得积分10
13秒前
17秒前
往事不可挽回完成签到 ,获得积分10
19秒前
王英俊完成签到,获得积分10
21秒前
小马甲应助GongSyi采纳,获得10
23秒前
梧桐发布了新的文献求助10
23秒前
土豆丝关注了科研通微信公众号
25秒前
syy080837完成签到,获得积分10
27秒前
wxyshare举报小巧初露求助涉嫌违规
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
孙_boss完成签到 ,获得积分10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
28秒前
浮游应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
Mic应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
Verity应助科研通管家采纳,获得10
29秒前
ysl应助科研通管家采纳,获得10
29秒前
Mic应助科研通管家采纳,获得10
29秒前
Bsisoy完成签到,获得积分10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
29秒前
浮游应助科研通管家采纳,获得10
29秒前
宅多点应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915