Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors

计算机科学 水准点(测量) 人工智能 可穿戴计算机 卷积神经网络 软件部署 机器学习 深度学习 鉴定(生物学) 可穿戴技术 惯性测量装置 残余物 骨料(复合) 嵌入式系统 材料科学 大地测量学 算法 复合材料 植物 生物 地理 操作系统
作者
Sakorn Mekruksavanich,Anuchit Jitpattanakul
出处
期刊:Intelligent Automation and Soft Computing [Computers, Materials and Continua (Tech Science Press)]
卷期号:36 (2): 2111-2128 被引量:27
标识
DOI:10.32604/iasc.2023.033542
摘要

The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturing firm are vital for the rapid and accurate diagnosis of work performance, particularly during the training of a new worker. Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques. Despite widespread computer vision-based approaches, it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where camera deployment is problematic. Through the use of wearable inertial sensors, we propose a deep learning method for automatically recognizing the activities of construction workers. The suggested method incorporates a convolutional neural network, residual connection blocks, and multi-branch aggregate transformation modules for high-performance recognition of complicated activities such as construction worker tasks. The proposed approach has been evaluated using standard performance measures, such as precision, F1-score, and AUC, using a publicly available benchmark dataset known as VTT-ConIoT, which contains genuine construction work activities. In addition, standard deep learning models (CNNs, RNNs, and hybrid models) were developed in different empirical circumstances to compare them to the proposed model. With an average accuracy of 99.71% and an average F1-score of 99.71%, the experimental findings revealed that the suggested model could accurately recognize the actions of construction workers. Furthermore, we examined the impact of window size and sensor position on the identification efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
萧怡完成签到,获得积分20
刚刚
月月完成签到 ,获得积分10
刚刚
刚刚
汉堡包应助蛋堡洋芋采纳,获得10
刚刚
陌上尘发布了新的文献求助10
1秒前
超级面包完成签到,获得积分10
1秒前
暖暖发布了新的文献求助10
1秒前
憨厚山羊曾桑拿完成签到,获得积分10
1秒前
1秒前
dzjin发布了新的文献求助10
2秒前
飞云发布了新的文献求助10
3秒前
3秒前
哎嘤斯坦完成签到,获得积分10
3秒前
Hello应助小李采纳,获得10
5秒前
超级凡桃发布了新的文献求助10
5秒前
Akim应助没烦有脑采纳,获得10
5秒前
刀锋完成签到,获得积分10
5秒前
6秒前
hyx完成签到,获得积分10
6秒前
sunhhhh完成签到 ,获得积分10
6秒前
朵拉A梦完成签到,获得积分10
6秒前
huba完成签到 ,获得积分10
6秒前
FashionBoy应助古月采纳,获得10
7秒前
天涯飞虎完成签到 ,获得积分10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助及时行乐采纳,获得10
7秒前
7秒前
所所应助jeronimo采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
怎么办应助May采纳,获得10
7秒前
健康小宋应助科研通管家采纳,获得10
7秒前
jessie发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164