化学
生物膜
金黄色葡萄球菌
抗菌活性
大肠杆菌
纳米纤维素
细菌
膜透性
细菌细胞结构
细菌生长
生物物理学
粘附
磁导率
微生物学
膜
生物化学
核化学
有机化学
生物
纤维素
基因
遗传学
作者
Huaixiang Tian,Wei Li,Chen Chen,Haiyan Yu,Haibin Yuan
标识
DOI:10.1002/mabi.202200459
摘要
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.
科研通智能强力驱动
Strongly Powered by AbleSci AI