Information Theory Based Probabilistic Approach to Blade Damage Detection of Turbomachine Using Sensor Data

主成分分析 计算机科学 人工智能 降维 概率逻辑 特征提取 熵(时间箭头) 小波 数据建模 机器学习 模式识别(心理学) 数据挖掘 量子力学 物理 数据库
作者
Shuhua Yang,Xiaomo Jiang,Shengli Xu,Xiaofang Wang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:67 (12): 10887-10896 被引量:6
标识
DOI:10.1109/tie.2019.2959506
摘要

An unplanned breakdown in power generation or chemical plant due to the component failure of turbomachines often results in a huge loss of property and productivity as well as a significant increase in maintenance costs. It has become of paramount importance to predict component damage in a turbomachine using instrumented data. Most existing models, however, are obtained from multiple assumptions, resulting in a high false detection ratio due to various data uncertainties. In this article, we present a novel model-free probabilistic methodology for damage detection to resolve the drawbacks of the classical methods. The proposed method adeptly integrates Bayesian inference, wavelets signal processing, probabilistic principal components analysis, and entropy information theory. Bayesian inference is developed for denoising raw data by integrating with multiscale discrete wavelet packets transform and reducing multivariate dimension by combining with principal components analysis. The entropy information theory has been proposed to extract the feature from principal components as a precursor of the event. A multimetric hierarchical alerting strategy is proposed to predict component damage to enhance the accuracy. The feasibility of the presented novel pattern recognition methodology is demonstrated with the detection of blade damage events in a real-world steam turbine using sensor data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anna完成签到,获得积分10
1秒前
断章发布了新的文献求助10
2秒前
2秒前
吴小苏完成签到 ,获得积分10
2秒前
小粒橙完成签到 ,获得积分10
2秒前
dyd发布了新的文献求助30
3秒前
崔文兴完成签到,获得积分10
3秒前
4秒前
砼砼完成签到,获得积分10
4秒前
赵银志发布了新的文献求助10
5秒前
saflgf完成签到,获得积分10
6秒前
6秒前
阿耒发布了新的文献求助10
7秒前
LQ发布了新的文献求助30
8秒前
8秒前
Echo发布了新的文献求助10
8秒前
小黄车发布了新的文献求助10
9秒前
炎炎大树完成签到,获得积分10
10秒前
11秒前
赘婿应助Steven24go采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
14秒前
酷波er应助jxwe采纳,获得30
14秒前
Hilda007发布了新的文献求助10
15秒前
16秒前
羊小受发布了新的文献求助10
17秒前
执着冬亦发布了新的文献求助30
17秒前
18秒前
芽芽鸭发布了新的文献求助10
18秒前
gett发布了新的文献求助10
19秒前
跳跃雁开完成签到,获得积分10
19秒前
maomao完成签到,获得积分10
20秒前
悠哉发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308864
求助须知:如何正确求助?哪些是违规求助? 4453810
关于积分的说明 13858222
捐赠科研通 4341572
什么是DOI,文献DOI怎么找? 2384004
邀请新用户注册赠送积分活动 1378588
关于科研通互助平台的介绍 1346583