RIFT: Multi-Modal Image Matching Based on Radiation-Variation Insensitive Feature Transform

人工智能 尺度不变特征变换 模式识别(心理学) 合成孔径雷达 计算机科学 特征(语言学) 计算机视觉 特征提取 语言学 哲学
作者
Jiayuan Li,Qingwu Hu,Mingyao Ai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3296-3310 被引量:395
标识
DOI:10.1109/tip.2019.2959244
摘要

Traditional feature matching methods, such as scale-invariant feature transform (SIFT), usually use image intensity or gradient information to detect and describe feature points; however, both intensity and gradient are sensitive to nonlinear radiation distortions (NRD). To solve this problem, this paper proposes a novel feature matching algorithm that is robust to large NRD. The proposed method is called radiation-variation insensitive feature transform (RIFT). There are three main contributions in RIFT. First, RIFT uses phase congruency (PC) instead of image intensity for feature point detection. RIFT considers both the number and repeatability of feature points and detects both corner points and edge points on the PC map. Second, RIFT originally proposes a maximum index map (MIM) for feature description. The MIM is constructed from the log-Gabor convolution sequence and is much more robust to NRD than traditional gradient map. Thus, RIFT not only largely improves the stability of feature detection but also overcomes the limitation of gradient information for feature description. Third, RIFT analyses the inherent influence of rotations on the values of the MIM and realises rotation invariance. We use six different types of multi-modal image datasets to evaluate RIFT, including optical-optical, infrared-optical, synthetic aperture radar (SAR)-optical, depth-optical, map-optical, and day-night datasets. Experimental results show that RIFT is superior to SIFT and SAR-SIFT on multi-modal images. To the best of our knowledge, RIFT is the first feature matching algorithm that can achieve good performance on all the abovementioned types of multi-modal images. The source code of RIFT and the multi-modal image datasets are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
zxxx完成签到,获得积分10
5秒前
蓝桉发布了新的文献求助10
5秒前
5秒前
夏雪冬花发布了新的文献求助10
6秒前
hyh发布了新的文献求助10
7秒前
深情安青应助SUIJI采纳,获得10
8秒前
三国杀校老弟完成签到,获得积分10
9秒前
10秒前
南枝完成签到 ,获得积分10
11秒前
bkagyin应助夏雪冬花采纳,获得10
11秒前
淡然白安发布了新的文献求助50
11秒前
倒背如流圆周率完成签到,获得积分0
12秒前
wanci应助加菲丰丰采纳,获得10
13秒前
大饼大饼完成签到,获得积分10
13秒前
能干冰露完成签到,获得积分10
13秒前
超帅沂完成签到,获得积分10
14秒前
书记发布了新的文献求助10
15秒前
SUIJI完成签到,获得积分10
15秒前
wowowww完成签到,获得积分20
16秒前
16秒前
17秒前
恰饭完成签到,获得积分10
18秒前
20秒前
20秒前
拣尽南枝完成签到 ,获得积分10
21秒前
fxy完成签到 ,获得积分10
23秒前
陈陈发布了新的文献求助30
24秒前
29秒前
陈陈完成签到,获得积分10
30秒前
hello小鹿完成签到,获得积分10
30秒前
long完成签到 ,获得积分10
31秒前
HL发布了新的文献求助10
33秒前
直率的乐萱完成签到 ,获得积分10
36秒前
唯博完成签到 ,获得积分10
37秒前
小马甲应助过时的机器猫采纳,获得10
39秒前
香蕉觅云应助留胡子的霖采纳,获得10
40秒前
平常甜瓜完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878