Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm

高光谱成像 人工智能 模式识别(心理学) 荧光 降维 支持向量机 计算机科学 生物系统 数学 化学 物理 光学 生物
作者
Xin Zhou,Jun Sun,Yan Tian,Kunshan Yao,Min Xu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:266: 120460-120460 被引量:35
标识
DOI:10.1016/j.saa.2021.120460
摘要

The feasibility analysis of fluorescence hyperspectral imaging technology was studied for the detection of lead content in lettuce leaves. Further, Monte Carlo optimized wavelet transform stacked auto-encoders (WT-MC-SAE) was proposed for dimensionality reduction and depth feature extraction of fluorescence spectral data. The fluorescence hyperspectral images of 2800 lettuce leaf samples were selected and the whole lettuce leaf was used as the region of interest (ROI) to extract the fluorescence spectrum. Five different pre-processing algorithms were used to pre-process the original ROI spectral data including standard normalized variable (SNV), first derivative (1st Der), second derivative (2ndDer), third derivative (3rd Der) and fourth derivative (4th Der). Moreover, wavelet transform stacked auto-encoders (WT-SAE) and WT-MC-SAE were used for data dimensionality reduction, and support vector machine regression (SVR) was used for modeling analysis. Among them, 4th Der tends to be the most useful fluorescence spectral data for Pb content detection at 0.067 ∼ 1.400 mg/kg in lettuce leaves, with Rc2 of 0.9802, RMSEC of 0.02321 mg/kg, Rp2 of 0.9467, RMSEP of 0.04017 mg/kg and RPD of 3.273, and model scale (the number of nodes in the input layer, hidden layer and output layer) was 407-314-286-121-76 under the fifth level of wavelet decomposition. Further studies showed that WT-MC-SAE realizes the depth feature extraction of the fluorescence spectrum, and it is of great significance to use fluorescence hyperspectral imaging to realize the quantitative detection of lead in lettuce leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SYLH应助yuanlee2011采纳,获得10
1秒前
万能图书馆应助周小鱼采纳,获得10
3秒前
野性的曼香完成签到 ,获得积分10
3秒前
4秒前
DY完成签到,获得积分0
5秒前
5秒前
jjwen发布了新的文献求助10
5秒前
7秒前
hkxfg发布了新的文献求助10
7秒前
dtoakm完成签到,获得积分20
7秒前
谦让寒云完成签到 ,获得积分10
7秒前
cc完成签到,获得积分10
9秒前
10秒前
科研小谢发布了新的文献求助10
10秒前
12秒前
周小鱼发布了新的文献求助10
13秒前
LR完成签到,获得积分10
13秒前
暴躁的海ge完成签到,获得积分10
13秒前
5114发布了新的文献求助10
14秒前
我是老大应助科研小谢采纳,获得10
16秒前
HuFan1201完成签到 ,获得积分10
16秒前
情怀应助hkxfg采纳,获得10
18秒前
爆米花应助清风采纳,获得10
18秒前
愉快的真发布了新的文献求助100
18秒前
闲听花落完成签到 ,获得积分10
24秒前
坚强的赛凤完成签到,获得积分10
27秒前
魏伯安发布了新的文献求助10
31秒前
39秒前
魏伯安完成签到,获得积分10
40秒前
懒猫发布了新的文献求助20
40秒前
SYLH应助罐装冰块采纳,获得10
40秒前
科研通AI5应助坚定的靖巧采纳,获得10
44秒前
覃昔丰发布了新的文献求助10
44秒前
冷静的棒棒糖完成签到 ,获得积分10
45秒前
gggggd完成签到,获得积分10
46秒前
科研通AI5应助a136采纳,获得10
50秒前
50秒前
ZR666888完成签到,获得积分10
50秒前
cdercder应助宝宝采纳,获得20
50秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367840
关于积分的说明 10447987
捐赠科研通 3087298
什么是DOI,文献DOI怎么找? 1698552
邀请新用户注册赠送积分活动 816826
科研通“疑难数据库(出版商)”最低求助积分说明 769973