Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations

计算机科学 领域(数学) 自由裁量权 订单(交换) 算法 数学 经济 财务 政治学 法学 纯数学
作者
J Sun,Dennis Zhang,Haoyuan Hu,Jan A. Van Mieghem
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (2): 846-865 被引量:111
标识
DOI:10.1287/mnsc.2021.3990
摘要

Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of the Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers’ aversion, inability, or discretion to precisely implement algorithmic prescriptions. We propose a new “human-centric bin packing algorithm” that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then proactively adjusts the algorithmic prescriptions of those “targeted packages.” We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba’s original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations. This paper was accepted by Charles Corbett, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加百莉完成签到,获得积分10
1秒前
Tal完成签到,获得积分10
2秒前
灰色与青完成签到,获得积分10
2秒前
NexusExplorer应助欣慰的书本采纳,获得10
3秒前
Xu发布了新的文献求助50
4秒前
烟花应助糖糖糖唐采纳,获得10
4秒前
年轻枫完成签到 ,获得积分10
6秒前
马凤智完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
wanci应助负责无敌采纳,获得10
10秒前
10秒前
Fayee发布了新的文献求助10
10秒前
11秒前
Zoe完成签到,获得积分10
11秒前
面壁的章北海完成签到,获得积分10
11秒前
孙小立发布了新的文献求助10
11秒前
利物鸟贝拉完成签到,获得积分10
12秒前
wdwyyds完成签到,获得积分10
12秒前
Lucas应助shiiiny采纳,获得10
13秒前
生动的飞珍完成签到,获得积分10
15秒前
毛豆爸爸应助挽风采纳,获得10
16秒前
星晴完成签到,获得积分10
16秒前
打打应助tguczf采纳,获得10
16秒前
16秒前
GRX1110发布了新的文献求助10
17秒前
张阳完成签到,获得积分10
17秒前
zhangbinyuan发布了新的文献求助10
17秒前
子车茗应助虞无声采纳,获得30
18秒前
赵yy完成签到,获得积分0
18秒前
18秒前
meimei完成签到 ,获得积分10
20秒前
桐桐应助壹贰叁肆采纳,获得10
20秒前
lhy1150469792完成签到,获得积分10
20秒前
21秒前
负责无敌发布了新的文献求助10
22秒前
糖糖糖唐发布了新的文献求助10
23秒前
hbb发布了新的文献求助20
23秒前
cq完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867