Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations

计算机科学 领域(数学) 自由裁量权 订单(交换) 算法 数学 经济 财务 政治学 法学 纯数学
作者
J Sun,Dennis Zhang,Haoyuan Hu,Jan A. Van Mieghem
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (2): 846-865 被引量:106
标识
DOI:10.1287/mnsc.2021.3990
摘要

Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of the Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers’ aversion, inability, or discretion to precisely implement algorithmic prescriptions. We propose a new “human-centric bin packing algorithm” that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then proactively adjusts the algorithmic prescriptions of those “targeted packages.” We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba’s original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations. This paper was accepted by Charles Corbett, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏打发布了新的文献求助10
刚刚
木木完成签到,获得积分20
1秒前
情怀应助wxy采纳,获得10
3秒前
3秒前
4秒前
4秒前
酷波er应助南歌子采纳,获得10
5秒前
sgkyy发布了新的文献求助10
5秒前
兔子发布了新的文献求助10
6秒前
6秒前
psybrain9527完成签到,获得积分10
6秒前
Susu发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
kin发布了新的文献求助10
10秒前
jwjx完成签到,获得积分20
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
silence完成签到,获得积分10
13秒前
树池发布了新的文献求助10
13秒前
不能当饭吃完成签到,获得积分10
13秒前
万能图书馆应助WT采纳,获得10
13秒前
14秒前
郑建辉发布了新的文献求助10
14秒前
iNk应助Ken采纳,获得10
14秒前
珂珂发布了新的文献求助10
14秒前
我是老大应助jwjx采纳,获得10
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
16秒前
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864497
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651703
捐赠科研通 3130813
什么是DOI,文献DOI怎么找? 1726640
邀请新用户注册赠送积分活动 831917
科研通“疑难数据库(出版商)”最低求助积分说明 780051