Machine learning algorithms can more efficiently predict biochemical recurrence after robot‐assisted radical prostatectomy

逻辑回归 前列腺切除术 断点群集区域 医学 随机森林 生化复发 前列腺癌 人工智能 阶段(地层学) 线性判别分析 泌尿科 机器学习 接收机工作特性 算法 外科 数学 内科学 计算机科学 癌症 生物 古生物学 受体
作者
Mithat Ekşi,İsmaıl Evren,Fatih Akkaş,Yusuf Arıkan,Osman Özdemir,Deniz Noyan Özlü,Ali Ayten,Selçuk Şahin,Volkan Tuğcu,Ali İhsan Taşçı
出处
期刊:The Prostate [Wiley]
卷期号:81 (12): 913-920 被引量:18
标识
DOI:10.1002/pros.24188
摘要

Abstract Objectives To develop a model for predicting biochemical recurrence (BCR) in patients with long follow‐up periods using clinical parameters and the machine learning (ML) methods. Materials Method Patients who underwent robot‐assisted radical prostatectomy between January 2014 and December 2019 were retrospectively reviewed. Patients who did not have BCR were assigned to Group 1, while those diagnosed with BCR were assigned to Group 2. The patient's demographic data, preoperative and postoperative parameters were all recorded in the database. Three different ML algorithms were employed: random forest, K‐nearest neighbour, and logistic regression. Results Three hundred and sixty‐eight patients were included in this study. Among these patients, 295 (80.1%) did not have BCR (Group 1), while 73 (19.8%) had BCR (Group 2). The mean duration of follow‐up and duration until the diagnosis of BCR was calculated as 35.2 ± 16.7 and 11.5 ± 11.3 months, respectively. The multivariate analysis revealed that NLR, PSAd, risk classification, PIRADS score, T stage, presence or absence of positive surgical margin, and seminal vesicle invasion were predictive for BCR. Classic Cox regression analysis had an area under the curve (AUC) of 0.915 with a sensitivity and specificity of 90.6% and 79.8%. The AUCs for receiver‐operating characteristic curves for random forest, K nearest neighbour, and logistic regression were 0.95, 0.93, and 0.93, respectively. All ML models outperformed the conventional statistical regression model in the prediction of BCR after prostatectomy. Conclusion The construction of more reliable and potent models will provide the clinicians and patients with advantages such as more accurate risk classification, prognosis estimation, early intervention, avoidance of unnecessary treatments, relatively lower morbidity and mortality. The ML methods are cheap, and their powers increase with increasing data input; we believe that their clinical use will increase over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LuoJiajun完成签到,获得积分10
刚刚
Tardigrade应助昏睡的蟠桃采纳,获得80
刚刚
不解释完成签到,获得积分10
刚刚
dmq完成签到 ,获得积分10
1秒前
充电宝应助laihama采纳,获得10
1秒前
xhm发布了新的文献求助10
2秒前
Chandler完成签到,获得积分10
3秒前
诩阽完成签到,获得积分10
3秒前
舒心的雍完成签到,获得积分10
3秒前
无极微光应助STP顶峰相见采纳,获得20
3秒前
量子星尘发布了新的文献求助10
4秒前
11完成签到 ,获得积分10
4秒前
飘逸映冬完成签到,获得积分10
4秒前
贪吃的双下巴完成签到,获得积分10
4秒前
luochen完成签到,获得积分0
4秒前
科研通AI6.1应助叉叉采纳,获得10
5秒前
5秒前
小蘑菇噢噢噢完成签到,获得积分10
5秒前
归海子轩完成签到 ,获得积分10
6秒前
6秒前
核潜艇很优秀完成签到,获得积分0
6秒前
maiyatang完成签到,获得积分10
7秒前
7秒前
文艺的老太完成签到,获得积分10
7秒前
cqnuly完成签到,获得积分10
8秒前
MG_aichy完成签到,获得积分10
8秒前
风2完成签到,获得积分10
8秒前
喵呜完成签到,获得积分10
9秒前
wjj119完成签到,获得积分10
9秒前
诚心茈完成签到,获得积分10
9秒前
9秒前
含糊的画板完成签到,获得积分10
9秒前
爱听歌康乃馨完成签到,获得积分0
10秒前
乘风文月完成签到,获得积分10
10秒前
心灵美映之完成签到 ,获得积分10
10秒前
爱因斯坦那个和我一样的科学家完成签到 ,获得积分10
11秒前
小杭776完成签到,获得积分0
11秒前
务实振家发布了新的文献求助10
12秒前
tian完成签到,获得积分10
12秒前
bodhi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765314
求助须知:如何正确求助?哪些是违规求助? 5560332
关于积分的说明 15408304
捐赠科研通 4900070
什么是DOI,文献DOI怎么找? 2636173
邀请新用户注册赠送积分活动 1584389
关于科研通互助平台的介绍 1539646