Pavlovian Control of Escape and Avoidance

心理学 厌恶性刺激 行为抑制 背景(考古学) 经典条件反射 钢筋 强化学习 神经科学 动作(物理) 认知心理学 社会心理学 条件作用 人工智能 精神科 焦虑 古生物学 物理 统计 生物 量子力学 计算机科学 数学
作者
Alexander J. Millner,Samuel J. Gershman,Matthew K. Nock,Hanneke E.M. den Ouden
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:30 (10): 1379-1390 被引量:51
标识
DOI:10.1162/jocn_a_01224
摘要

To survive in complex environments, animals need to have mechanisms to select effective actions quickly, with minimal computational costs. As perhaps the computationally most parsimonious of these systems, Pavlovian control accomplishes this by hardwiring specific stereotyped responses to certain classes of stimuli. It is well documented that appetitive cues initiate a Pavlovian bias toward vigorous approach; however, Pavlovian responses to aversive stimuli are less well understood. Gaining a deeper understanding of aversive Pavlovian responses, such as active avoidance, is important given the critical role these behaviors play in several psychiatric conditions. The goal of the current study was to establish a behavioral and computational framework to examine aversive Pavlovian responses (activation vs. inhibition) depending on the proximity of an aversive state (escape vs. avoidance). We introduce a novel task in which participants are exposed to primary aversive (noise) stimuli and characterized behavior using a novel generative computational model. This model combines reinforcement learning and drift-diffusion models so as to capture effects of invigoration/inhibition in both explicit choice behavior as well as changes in RT. Choice and RT results both suggest that escape is associated with a bias for vigorous action, whereas avoidance is associated with behavioral inhibition. These results lay a foundation for future work seeking insights into typical and atypical aversive Pavlovian responses involved in psychiatric disorders, allowing us to quantify both implicit and explicit indices of vigorous choice behavior in the context of aversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳山柏完成签到,获得积分20
刚刚
1秒前
Lucas应助daytoy采纳,获得10
1秒前
1秒前
1秒前
1秒前
沐言完成签到,获得积分10
2秒前
2秒前
Qing完成签到,获得积分10
3秒前
勤劳山柏发布了新的文献求助10
4秒前
灵寒完成签到 ,获得积分10
4秒前
5秒前
科研通AI6应助科研式采纳,获得10
5秒前
彭于晏应助木子采纳,获得10
5秒前
科研通AI5应助Yuanyuan采纳,获得10
5秒前
量子星尘发布了新的文献求助50
6秒前
6秒前
爆米花应助NiL采纳,获得10
7秒前
shirely完成签到,获得积分10
8秒前
柑橘小桃酥完成签到,获得积分10
8秒前
8秒前
Killor发布了新的文献求助10
8秒前
wp完成签到,获得积分10
8秒前
8秒前
缥缈冷亦完成签到,获得积分10
8秒前
小学猹完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
K先生发布了新的文献求助10
12秒前
mnm发布了新的文献求助10
13秒前
和谐的素发布了新的文献求助10
13秒前
NiL完成签到,获得积分10
14秒前
Zoe_Zhang发布了新的文献求助10
14秒前
科研通AI5应助wyb采纳,获得10
15秒前
15秒前
15秒前
祝雨晴完成签到 ,获得积分10
15秒前
翼德救我i应助迷你的念珍采纳,获得10
15秒前
1111完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310