亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image–text sentiment analysis via deep multimodal attentive fusion

计算机科学 情绪分析 人工智能 融合 图像融合 深度学习 自然语言处理 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Feiran Huang,Xiaoming Zhang,Zhonghua Zhao,Jie Xu,Zhoujun Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:167: 26-37 被引量:261
标识
DOI:10.1016/j.knosys.2019.01.019
摘要

Sentiment analysis of social media data is crucial to understand people’s position, attitude, and opinion toward a certain event, which has many applications such as election prediction and product evaluation. Though great effort has been devoted to the single modality (image or text), less effort is paid to the joint analysis of multimodal data in social media. Most of the existing methods for multimodal sentiment analysis simply combine different data modalities, which results in dissatisfying performance on sentiment classification. In this paper, we propose a novel image–text sentiment analysis model, i.e., Deep Multimodal Attentive Fusion (DMAF), to exploit the discriminative features and the internal correlation between visual and semantic contents with a mixed fusion framework for sentiment analysis. Specifically, to automatically focus on discriminative regions and important words which are most related to the sentiment, two separate unimodal attention models are proposed to learn effective emotion classifiers for visual and textual modality respectively. Then, an intermediate fusion-based multimodal attention model is proposed to exploit the internal correlation between visual and textual features for joint sentiment classification. Finally, a late fusion scheme is applied to combine the three attention models for sentiment prediction. Extensive experiments are conducted to demonstrate the effectiveness of our approach on both weakly labeled and manually labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研小菜鸟完成签到,获得积分10
18秒前
萧萧应助科研小菜鸟采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
Akim应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
1分钟前
科研通AI2S应助土豪的念云采纳,获得10
2分钟前
Clifton完成签到 ,获得积分10
2分钟前
科研通AI6应助池雨采纳,获得10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
VDC完成签到,获得积分0
2分钟前
qc应助VDC采纳,获得30
2分钟前
Ccccn完成签到,获得积分10
3分钟前
asd1576562308完成签到 ,获得积分10
3分钟前
3分钟前
成就小蜜蜂完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
old幽露露完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
5分钟前
无闻发布了新的文献求助10
5分钟前
鲤鱼山人完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498393
求助须知:如何正确求助?哪些是违规求助? 4595621
关于积分的说明 14449560
捐赠科研通 4528461
什么是DOI,文献DOI怎么找? 2481521
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438364