From data to noise to data for mixing physics across temperatures with generative artificial intelligence

统计物理学 混合(物理) 生成语法 计算机科学 噪音(视频) 数据科学 人工智能 物理 量子力学 图像(数学)
作者
Yihang Wang,Lukas Herron,Pratyush Tiwary
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (32) 被引量:36
标识
DOI:10.1073/pnas.2203656119
摘要

Using simulations or experiments performed at some set of temperatures to learn about the physics or chemistry at some other arbitrary temperature is a problem of immense practical and theoretical relevance. Here we develop a framework based on statistical mechanics and generative artificial intelligence that allows solving this problem. Specifically, we work with denoising diffusion probabilistic models and show how these models in combination with replica exchange molecular dynamics achieve superior sampling of the biomolecular energy landscape at temperatures that were never simulated without assuming any particular slow degrees of freedom. The key idea is to treat the temperature as a fluctuating random variable and not a control parameter as is usually done. This allows us to directly sample from the joint probability distribution in configuration and temperature space. The results here are demonstrated for a chirally symmetric peptide and single-strand RNA undergoing conformational transitions in all-atom water. We demonstrate how we can discover transition states and metastable states that were previously unseen at the temperature of interest and even bypass the need to perform further simulations for a wide range of temperatures. At the same time, any unphysical states are easily identifiable through very low Boltzmann weights. The procedure while shown here for a class of molecular simulations should be more generally applicable to mixing information across simulations and experiments with varying control parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机灵笑萍完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
wangtaoi发布了新的文献求助10
1秒前
星辰大海应助cl采纳,获得30
1秒前
2秒前
诸葛钢铁完成签到,获得积分10
3秒前
大模型应助Yuuuuu采纳,获得10
4秒前
1762120发布了新的文献求助10
4秒前
果粒程发布了新的文献求助10
4秒前
小李发布了新的文献求助10
5秒前
任性映秋发布了新的文献求助10
6秒前
词穷发布了新的文献求助10
6秒前
6秒前
完美世界应助星辰采纳,获得10
6秒前
7秒前
彭于晏应助可乐不加冰采纳,获得10
7秒前
情怀应助Brightan采纳,获得10
7秒前
哈哈哈完成签到,获得积分10
8秒前
8秒前
tulips发布了新的文献求助10
10秒前
虾条发布了新的文献求助10
10秒前
12秒前
我是老大应助听月眠采纳,获得10
12秒前
12秒前
铁柱完成签到,获得积分10
13秒前
小羊完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
xiaofang发布了新的文献求助10
16秒前
kk发布了新的文献求助10
18秒前
18秒前
19秒前
852应助青年才俊采纳,获得10
19秒前
善学以致用应助青年才俊采纳,获得10
19秒前
小蘑菇应助青年才俊采纳,获得10
19秒前
科研通AI6应助Zzzzzzz采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534