纳米光刻
聚焦离子束
离子束
材料科学
计算机科学
纳米技术
过程(计算)
梁(结构)
离子
制作
光学
化学
物理
医学
替代医学
有机化学
病理
操作系统
作者
Oleksandr Buchnev,James A. Grant‐Jacob,R.W. Eason,Nikolay I. Zheludev,B. Mills,Kevin F. MacDonald
出处
期刊:Nano Letters
[American Chemical Society]
日期:2022-03-24
卷期号:22 (7): 2734-2739
被引量:19
标识
DOI:10.1021/acs.nanolett.1c04604
摘要
Focused ion beam (FIB) milling is an important rapid prototyping tool for micro- and nanofabrication and device and materials characterization. It allows for the manufacturing of arbitrary structures in a wide variety of materials, but establishing the process parameters for a given task is a multidimensional optimization challenge, usually addressed through time-consuming, iterative trial-and-error. Here, we show that deep learning from prior experience of manufacturing can predict the postfabrication appearance of structures manufactured by focused ion beam (FIB) milling with >96% accuracy over a range of ion beam parameters, taking account of instrument- and target-specific artifacts. With predictions taking only a few milliseconds, the methodology may be deployed in near real time to expedite optimization and improve reproducibility in FIB processing.
科研通智能强力驱动
Strongly Powered by AbleSci AI