亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Ensemble Selection for Imbalanced Data Streams With Concept Drift

概念漂移 分类器(UML) 过采样 计算机科学 数据流 随机子空间法 数据流挖掘 人工智能 数据挖掘 集成学习 机器学习 选择(遗传算法) 模式识别(心理学) 带宽(计算) 计算机网络 电信
作者
Botao Jiao,Yinan Guo,Dunwei Gong,Qiuju Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1278-1291 被引量:39
标识
DOI:10.1109/tnnls.2022.3183120
摘要

Ensemble learning, as a popular method to tackle concept drift in data stream, forms a combination of base classifiers according to their global performances. However, concept drift generally occurs in local data space, causing significantly different performances of a base classifier at different locations. Thus, employing global performance as a criterion to select base classifier is inappropriate. Moreover, data stream is often accompanied by class imbalance problem, which affects the classification accuracy of ensemble learning on minority instances. To drawback these problems, a dynamic ensemble selection for imbalanced data streams with concept drift (DES-ICD) is proposed. For data arrived in chunk-by-chunk, a novel synthetic minority oversampling technique with adaptive nearest neighbors (AnnSMOTE) is developed to generate new minority instances that conform to the new concept. Following that, DES-ICD creates a base classifier on newly arrived data chunk balanced by AnnSMOTE and merges it with historical base classifiers to form a candidate classifier pool. For each query instance, the optimal combination is constructed in terms of the performance of candidate classifiers in its neighborhood. Experimental results for nine synthetic and five real-world datasets show that the proposed method outperforms seven comparative methods on classification accuracy and tracks new concepts in an imbalanced data stream more preciously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
20秒前
31秒前
咸金城发布了新的文献求助30
32秒前
37秒前
38秒前
龙卡烧烤店完成签到,获得积分10
44秒前
wackykao完成签到,获得积分10
46秒前
50秒前
慕青应助科研通管家采纳,获得10
50秒前
CipherSage应助科研通管家采纳,获得10
50秒前
longh完成签到,获得积分10
53秒前
充电宝应助橙子采纳,获得10
1分钟前
跳跃的谷雪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
从容芮完成签到,获得积分0
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
yangjoy发布了新的文献求助10
1分钟前
Michael应助时尚纸鹤采纳,获得20
1分钟前
2分钟前
heqiujing发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
CodeCraft应助感性的送终采纳,获得10
3分钟前
3分钟前
今后应助舒服的觅夏采纳,获得10
3分钟前
机灵自中完成签到,获得积分10
3分钟前
orixero应助mbxjsy采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
舒服的觅夏完成签到,获得积分10
3分钟前
mbxjsy发布了新的文献求助10
3分钟前
xyliu完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
4分钟前
Vivianxly完成签到,获得积分20
4分钟前
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837373
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509816
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552