Machine learning to improve the interpretation of intercalating dye-based quantitative PCR results

人工智能 计算机科学 分类器(UML) 机器学习 科恩卡帕 卡帕 口译(哲学) 模式识别(心理学) 数学 几何学 程序设计语言
作者
Alexandre Godmer,Jeanne Bigot,Quentin Giai Gianetto,Yahia Benzerara,Nicolas Véziris,Alexandra Aubry,J. Guitard,Christophe Hennequin
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:5
标识
DOI:10.1038/s41598-022-21010-z
摘要

This study aimed to evaluate the contribution of Machine Learning (ML) approach in the interpretation of intercalating dye-based quantitative PCR (IDqPCR) signals applied to the diagnosis of mucormycosis. The ML-based classification approach was applied to 734 results of IDqPCR categorized as positive (n = 74) or negative (n = 660) for mucormycosis after combining "visual reading" of the amplification and denaturation curves with clinical, radiological and microbiological criteria. Fourteen features were calculated to characterize the curves and injected in several pipelines including four ML-algorithms. An initial subset (n = 345) was used for the conception of classifiers. The classifier predictions were combined with majority voting to estimate performances of 48 meta-classifiers on an external dataset (n = 389). The visual reading returned 57 (7.7%), 568 (77.4%) and 109 (14.8%) positive, negative and doubtful results respectively. The Kappa coefficients of all the meta-classifiers were greater than 0.83 for the classification of IDqPCR results on the external dataset. Among these meta-classifiers, 6 exhibited Kappa coefficients at 1. The proposed ML-based approach allows a rigorous interpretation of IDqPCR curves, making the diagnosis of mucormycosis available for non-specialists in molecular diagnosis. A free online application was developed to classify IDqPCR from the raw data of the thermal cycler output ( http://gepamy-sat.asso.st/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐碧萱完成签到 ,获得积分10
刚刚
听风遇见完成签到,获得积分10
2秒前
在水一方应助暴发户采纳,获得30
3秒前
4秒前
5秒前
Moon完成签到,获得积分10
7秒前
9秒前
BGa完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
lmt完成签到,获得积分10
11秒前
h41692011完成签到 ,获得积分10
11秒前
zz完成签到 ,获得积分10
12秒前
13秒前
coolkid应助zcy采纳,获得20
13秒前
13秒前
桃子爱学习完成签到,获得积分10
14秒前
14秒前
15秒前
uulli发布了新的文献求助10
15秒前
tutulunzi发布了新的文献求助10
16秒前
卢伟发布了新的文献求助10
16秒前
17秒前
19秒前
明天又是美好的一天完成签到 ,获得积分10
21秒前
寒冷煎饼发布了新的文献求助10
22秒前
24秒前
zcy完成签到,获得积分10
25秒前
彭彭应助自然垣采纳,获得10
25秒前
27秒前
寒冷煎饼完成签到,获得积分10
30秒前
明理新晴完成签到,获得积分10
30秒前
33秒前
33秒前
怂怂鼠完成签到,获得积分10
34秒前
暴发户完成签到,获得积分10
34秒前
hyrie给hyrie的求助进行了留言
35秒前
猪猪hero应助小星玉米浓汤采纳,获得10
37秒前
奋斗橘子发布了新的文献求助10
37秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409