琥珀酸纤维杆菌
葡聚糖酶
化学
领域(数学分析)
生物化学
酶
数学
发酵
瘤胃
数学分析
作者
Zhongyu Shi,Xiasen Wei,Yunfan Wei,Zheyi Zhang,Sibao Wan,Haiyan Gao,Zhen Qin
标识
DOI:10.1016/j.ijbiomac.2024.133026
摘要
A novel glycoside hydrolase (GH) family 16 multi-domain β-1,3-1,4-glucanase (FsGlc16A) from Fibrobacter sp. UWP2 was identified, heterogeneously expressed, and its enzymatic properties, protein structure and application potential were characterized. Enzymological characterization showed that FsGlc16A performed the optimal catalytic activity at pH 4.5 and 50 °C with a specific activity of 3263 U/mg. FsGlc16A exhibited the substrate specificity towards oat β-glucan, barley β-glucan and lichenan, and in addition, it hydrolyzed oat β-glucan and lichenan into different β-glucooligosaccharides with polymerization degrees of 3–4, which further illustrated that it belonged to the endo-type β-1,3-1,4-glucanase. FsGlc16A was classified in subfamily25 of GH16. A 'PXSSSS' repeats domain was identified at the C-terminus of FsGlc16A, which was distinct from the typical GH family 16 β-1,3-1,4-glucanases. Removing the 'PXSSSS' repeats domain affected the binding of the substrate to FsGlc16A and reduced the enzyme activity. FsGlc16A displayed good potential for the applications, which hydrolyzed oat bran into β-glucooligosaccharides, and reduced filtration time (18.89 %) and viscosity (3.64 %) in the saccharification process. This study investigated the enzymatic properties and domain function of FsGlc16A, providing new ideas and insights into the study of β-1,3-1,4-glucanase.
科研通智能强力驱动
Strongly Powered by AbleSci AI