Deep Learning-Based Acoustic Emission Signal Filtration Model in Reinforced Concrete

声发射 过滤(数学) 材料科学 信号(编程语言) 声学 复合材料 钢筋混凝土 计算机科学 物理 数学 统计 程序设计语言
作者
Omair Inderyas,Ninel Alver,Sena Tayfur,Yuma Shimamoto,Tetsuya Suzuki
出处
期刊:Arabian journal for science and engineering [Springer Nature]
卷期号:50 (3): 1885-1903 被引量:6
标识
DOI:10.1007/s13369-024-09101-7
摘要

Abstract Acoustic emission is a nondestructive testing (NDT) technique, widely used to monitor the condition of structures for safety reasons especially in real time. The method utilizes the electrical signals generated by the elastic waves in a material under load to detect and locate damage in structures. However, identifying the sources of AE signals in concrete or composite materials can be challenging due to the anisotropic properties of materials and interpreting a large amount of AE data, leading to data misinterpretation and inaccurate detection of damage. Hence, the need for filtering out noise-induced signals from recorded data and emphasizing the actual AE source is crucial for monitoring and source localization of damage in real time. This study proposed a one-dimensional convolutional neural network (1D-CNN) deep learning approach to filter around 22,000 AE data in a reinforced concrete (RC) beam. The model utilizes significant AE parameters identified through neighborhood component analysis (NCA) to classify true AE signals from noise-induced signals. By using the optimized network parameters, a high classification accuracy of 97% and 96.29% was achieved during the training and testing phases, respectively. To check the reliability of the proposed AE filtering model in the real world, it was evaluated and verified using source location AE activities collected during a four-point bending test on a shear-deficient beam. The outcomes suggest that the proposed AE filtration model has the potential to accurately classify AE signals with an accuracy of 92.8% and proved that the filtration model provides accurate and valuable insight into source location determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CodeCraft应助益生菌小哥采纳,获得10
1秒前
谭文完成签到 ,获得积分10
1秒前
2秒前
guard发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
子车一手完成签到,获得积分10
5秒前
Yy123发布了新的文献求助10
5秒前
呵呵贺哈完成签到 ,获得积分10
5秒前
桀骜不驯发布了新的文献求助10
7秒前
CVI发布了新的文献求助10
8秒前
今后应助曾经问雁采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
12秒前
脑洞疼应助光亮的初曼采纳,获得10
13秒前
抽屉里的猫完成签到,获得积分10
13秒前
13秒前
13秒前
自觉嫣然完成签到,获得积分10
13秒前
Youdge完成签到,获得积分10
14秒前
15秒前
15秒前
无奈安卉发布了新的文献求助10
15秒前
15秒前
ava完成签到,获得积分10
15秒前
风语村发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
Yuantian发布了新的文献求助10
18秒前
19秒前
20秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312