Construction and validation of an endoscopic ultrasonography-based ultrasomics nomogram for differentiating pancreatic neuroendocrine tumors from pancreatic cancer

列线图 胰腺癌 内镜超声检查 医学 神经内分泌肿瘤 肿瘤科 胰腺神经内分泌肿瘤 癌症 内科学 放射科 癌症研究 病理 内窥镜检查
作者
Shuangyang Mo,Cheng Huang,Yingwei Wang,Huaying Zhao,Haixiao Wei,Haiyan Qin,Haixing Jiang,Shanyu Qin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14 被引量:8
标识
DOI:10.3389/fonc.2024.1359364
摘要

Objectives To develop and validate various ultrasomics models based on endoscopic ultrasonography (EUS) for retrospective differentiating pancreatic neuroendocrine tumors (PNET) from pancreatic cancer. Methods A total of 231 patients, comprising 127 with pancreatic cancer and 104 with PNET, were retrospectively enrolled. These patients were randomly divided into either a training or test cohort at a ratio of 7:3. Ultrasomics features were extracted from conventional EUS images, focusing on delineating the region of interest (ROI) for pancreatic lesions. Subsequently, dimensionality reduction of the ultrasomics features was performed by applying the Mann-Whitney test and least absolute shrinkage and selection operator (LASSO) algorithm. Eight machine learning algorithms, namely logistic regression (LR), light gradient boosting machine (LightGBM), multilayer perceptron (MLP), random forest (RF), extra trees, k nearest neighbors (KNN), support vector machine (SVM), and extreme gradient boosting (XGBoost), were employed to train prediction models using nonzero coefficient features. The optimal ultrasomics model was determined using a ROC curve and utilized for subsequent analysis. Clinical-ultrasonic features were assessed using both univariate and multivariate logistic regression. An ultrasomics nomogram model, integrating both ultrasomics and clinical-ultrasonic features, was developed. Results A total of 107 EUS-based ultrasomics features were extracted, and 6 features with nonzero coefficients were ultimately retained. Among the eight ultrasomics models based on machine learning algorithms, the RF model exhibited superior performance with an AUC= 0.999 (95% CI 0.9977 - 1.0000) in the training cohort and an AUC= 0.649 (95% CI 0.5215 - 0.7760) in the test cohort. A clinical-ultrasonic model was established and evaluated, yielding an AUC of 0.999 (95% CI 0.9961 - 1.0000) in the training cohort and 0.847 (95% CI 0.7543 - 0.9391) in the test cohort. Subsequently, the ultrasomics nomogram demonstrated a significant improvement in prediction accuracy in the test cohort, as evidenced by an AUC of 0.884 (95% CI 0.8047 - 0.9635) and confirmed by the Delong test. The calibration curve and decision curve analysis (DCA) depicted this ultrasomics nomogram demonstrated superior accuracy. They also yielded the highest net benefit for clinical decision-making compared to alternative models. Conclusions A novel ultrasomics nomogram was proposed and validated, that integrated clinical-ultrasonic and ultrasomics features obtained through EUS, aiming to accurately and efficiently identify pancreatic cancer and PNET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
tangli完成签到 ,获得积分10
3秒前
3秒前
彩虹捕手发布了新的文献求助10
4秒前
BowieHuang应助谦让的小姜采纳,获得10
5秒前
verymiao完成签到 ,获得积分10
5秒前
丘比特应助YY采纳,获得10
5秒前
丘比特应助929采纳,获得30
5秒前
Red-Rain发布了新的文献求助10
6秒前
来来完成签到,获得积分10
7秒前
谁煮花生完成签到,获得积分10
7秒前
7秒前
香菜完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
刘子怡发布了新的文献求助10
8秒前
wwwwwcy发布了新的文献求助10
8秒前
8秒前
月亮完成签到,获得积分10
9秒前
华仔应助乐观的小猫咪采纳,获得10
9秒前
斯文败类应助蓝天采纳,获得10
9秒前
xiaojinzi完成签到,获得积分10
10秒前
mooncake187完成签到,获得积分10
11秒前
科研通AI6应助queer采纳,获得10
11秒前
斯文败类应助害羞的宛亦采纳,获得10
12秒前
12秒前
蓝天碧海小西服完成签到,获得积分0
12秒前
龙腾虎跃发布了新的文献求助10
12秒前
法郎发布了新的文献求助10
12秒前
科研通AI2S应助谦让的小姜采纳,获得10
12秒前
shhoing应助秋天采纳,获得10
13秒前
月亮发布了新的文献求助10
14秒前
xuan完成签到,获得积分10
14秒前
浮游应助谁煮花生采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536258
求助须知:如何正确求助?哪些是违规求助? 4623988
关于积分的说明 14590229
捐赠科研通 4564430
什么是DOI,文献DOI怎么找? 2501723
邀请新用户注册赠送积分活动 1480520
关于科研通互助平台的介绍 1451794