计算机科学
卷积神经网络
云计算
核(代数)
人工智能
卫星
卷积(计算机科学)
领域(数学)
模式识别(心理学)
数据挖掘
人工神经网络
数学
组合数学
纯数学
工程类
航空航天工程
操作系统
标识
DOI:10.1109/iccar57134.2023.10151764
摘要
Cloud classification and detection of satellite image are crucial for meteorological forecast. In this paper, we pro-pose the hierarchical attention-based fully convolutional network which employs low-level attention information to improve classification and detection accuracy for satellite cloud images. Our hierarchical attention architecture combines low-level and high-level information of convolutional neural network and considers spatial neighborhood information based on the receptive field of convolution kernel. Experimental results on satellite cloud dataset indicate that our hierarchical attention-based fully convolutional network outperforms the other methods on cloud classification and detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI