Confinement Effect and Hydrogen Species Modulation toward Enhanced Electrochemical CO 2 Reduction to Ethanol

还原(数学) 调制(音乐) 电化学 乙醇 化学 材料科学 电极 物理 生物化学 有机化学 物理化学 数学 几何学 声学
作者
Yuting Zhu,Jiamin Zhu,Huizhi Li,Shuhui Li,Yue Zhai,Shaowen Xu,Shanshan Wu,Yuan Chen,Yafu Wang,Rui Ren,An Li,Jiangwei Zhang,Pinxian Xi,Chun‐Hua Yan
出处
期刊:Research [AAAS00]
卷期号:8: 0796-0796 被引量:2
标识
DOI:10.34133/research.0796
摘要

The protonation process of adsorbed *CO intermediates has been widely recognized as a critical determinant governing product selectivity in electrocatalytic carbon dioxide reduction reaction (eCO 2 RR). However, the active hydrogen species and mechanism of *CO protonation in acid eCO 2 RR remain ambiguous. Particularly, the involvement of H + in *CO hydrogenation is still under debate. Here, we developed a CuCl-mediated synthesis strategy integrated with rare-earth doping electronic structure engineering, which enriches intermediates and promotes adsorbed hydrogen (*H) participation in reactions, respectively. For the first time, differential electrochemical mass spectrometry (DEMS) and nuclear magnetic resonance (NMR) were employed to clarify the participation of hydrogen species in liquid and gaseous eCO 2 RR products, with isotope labeling utilized to distinguish the distribution of H + and *H in the products. Experimental verification confirmed that in acidic electrolytes, the ethylene pathway was dominated by H + hydrogenation, whereas the ethanol pathway incorporated contributions from both H + and *H. Upon yttrium (Y) doping into Cu 2 O/CuCl, interfacial water activation was markedly enhanced, thereby enabling the provision of supplementary *H for catalytic engagement. Notably, our Y-Cu 2 O/CuCl catalyst achieves a remarkable 65.7% Faradaic efficiency for ethanol with exceptional 65-h stability at 200 mA cm −1 . This work provides new evidence for H + participation in acid eCO 2 RR, emphasizing the critical role of H 2 O activation degree in selectivity regulation, and thus offering novel insights for designing efficient acid eCO 2 RR catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
cslghe应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
小七完成签到,获得积分10
2秒前
基金中中中完成签到,获得积分10
2秒前
凌爽发布了新的文献求助10
4秒前
FF发布了新的文献求助10
5秒前
5秒前
黑夜的冰之歌完成签到,获得积分10
5秒前
小羊完成签到,获得积分10
5秒前
鼠鼠完成签到 ,获得积分10
7秒前
8秒前
热情孤丹发布了新的文献求助30
10秒前
1515完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
善良的半仙完成签到,获得积分10
13秒前
星之所在完成签到,获得积分10
15秒前
李三今完成签到,获得积分10
15秒前
赘婿应助无私茗采纳,获得10
15秒前
望向天空的鱼完成签到 ,获得积分10
15秒前
15秒前
科研通AI6应助凌爽采纳,获得10
16秒前
16秒前
子辰完成签到,获得积分10
17秒前
Jasper应助乌力吉采纳,获得10
18秒前
18秒前
xiaoyi完成签到,获得积分10
18秒前
nn完成签到 ,获得积分10
19秒前
爱听歌的糖豆完成签到,获得积分0
19秒前
科研通AI2S应助Jason采纳,获得10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5640430
求助须知:如何正确求助?哪些是违规求助? 4753610
关于积分的说明 15009444
捐赠科研通 4798654
什么是DOI,文献DOI怎么找? 2564721
邀请新用户注册赠送积分活动 1523316
关于科研通互助平台的介绍 1483034