All-atom protein sequence design based on geometric deep learning

序列(生物学) 蛋白质设计 深度学习 人工智能 计算机科学 化学 蛋白质结构 生物化学
作者
Jiale Liu,Zheng Guo,Changsheng Zhang,Luhua Lai
标识
DOI:10.1101/2024.03.18.585651
摘要

Abstract The development of advanced deep learning methods has revolutionized computational protein design. Although the success rate of design has been significantly increased, the overall accuracy of de novo design remains low. Many computational sequence design approaches are devoted to recover the original sequences for given protein structures by encoding the environment of the central residue without considering atomic details of side chains. This may limit the exploration of new sequences that can fold into the same structure and restrain function design that depends on interaction details. In this study, we proposed a novel deep learning frame-work, GeoSeqBuilder, to learn the relationship between protein structure and sequence based on rotational and translational invariance by extracting the information from relative locations. We utilized geometric deep learning to fetch the spatial local geometric features from protein backbones and explicitly incorporated three-body interactions to learn the inter-residue coupling information, and then determined the central residue type. Our model recovers over 50% native residue types and simultaneously gives highly accurate prediction of side-chain conformations which gives the atomic interaction details and circumvents the dependence of protein structure prediction tools. We used the likelihood confidence log P as scoring function for sequence and structure consistence evaluation which exhibits strong correlation with TM-score, and can be applied to recognize near-native structures from protein decoys pool in protein structure prediction. We have used GeoSeqBuilder to design sequences for two proteins, including thiore-doxin and a de novo hallucinated protein. All of the 15 sequences experimentally tested can be expressed as soluble monomeric proteins with high thermal stability and correct secondary structures. We further solved one crystal structure for thioredoxin and two for the hallucinated structure and all the experimentally solved structures are in good agreement with the designed models. The two designed sequences for the hallucination structure are novel without any homologous sequences within the latest released database clust30. The ability of GeoSeqBuilder to design new sequences for given protein structures with atomic details makes it applicable, not only for de novo sequence design, but also for protein-protein interaction and functional protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
赘婿应助iebdus123采纳,获得10
刚刚
yzy完成签到,获得积分10
1秒前
1秒前
Lucas应助MiLi采纳,获得10
1秒前
雪白智宸完成签到,获得积分10
2秒前
yhao完成签到,获得积分10
2秒前
zomy发布了新的社区帖子
2秒前
2秒前
2秒前
youhao6a发布了新的文献求助10
2秒前
小兰发布了新的文献求助10
3秒前
触地即化完成签到,获得积分10
3秒前
tianmeiling完成签到 ,获得积分10
3秒前
冬虫草发布了新的文献求助20
3秒前
尤有发布了新的文献求助10
4秒前
守夜人完成签到,获得积分10
5秒前
5秒前
6秒前
林利芳发布了新的文献求助20
6秒前
温暖寻云发布了新的文献求助10
6秒前
Kate发布了新的文献求助10
7秒前
cbb发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
程瑞哲完成签到,获得积分10
8秒前
六月完成签到,获得积分10
8秒前
guoxu123完成签到,获得积分10
9秒前
旧辞完成签到 ,获得积分10
9秒前
9秒前
pzh完成签到,获得积分10
9秒前
102755完成签到,获得积分10
10秒前
张博完成签到,获得积分10
10秒前
研友_LX66qZ完成签到,获得积分10
10秒前
Sweet完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578