Deep learning for liver cancer histopathology image analysis: A comprehensive survey

计算机科学 人工智能 组织病理学 深度学习 癌症 水准点(测量) 肝癌 机器学习 病理 医学 内科学 大地测量学 地理
作者
Haoyang Jiang,Yimin Yin,Jinghua Zhang,Wanxia Deng,Chen Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108436-108436 被引量:4
标识
DOI:10.1016/j.engappai.2024.108436
摘要

Liver cancer is the predominant cause of cancer-related fatalities globally, wherein Hepatocellular Carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) emerge as the principal subtypes. Histopathology images, revered as the definitive benchmark for liver cancer diagnosis, yield rich phenotypic information, instrumental in facilitating disease progression prediction and potential survival prognostication. Deep learning has been rapidly developed recently and has become the mainstream technique for liver cancer histopathology image analysis, showing noteworthy accomplishments. This article undertakes a comprehensive examination of over 50 publications within the domain of deep learning-based liver cancer histopathology analysis, systematically discussing many advanced approaches. We commence our exploration by elucidating diverse facets of this field, encompassing problem formulation, general learning paradigms, and main challenges. Subsequently, we present a meticulous summary of publicly accessible datasets and evaluation metrics. To foster a deeper understanding of the research status of this domain, we furnish a taxonomy covering supervised learning and weakly supervised learning approaches within the specific tasks, i.e., classification and localization for histopathology diagnosis as well as deep learning-based survival models for disease prognosis. Finally, we discuss existing open issues and potential future trends within the realm of computational histopathology in liver cancer research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助仙笛童神采纳,获得10
刚刚
mojito完成签到 ,获得积分10
刚刚
如意的皮卡丘完成签到 ,获得积分10
1秒前
思源应助dghjk采纳,获得10
2秒前
3秒前
LEV完成签到,获得积分10
6秒前
8秒前
IvenChou发布了新的文献求助10
8秒前
9秒前
YING完成签到,获得积分10
10秒前
11秒前
SYLH应助過客采纳,获得10
11秒前
12秒前
12秒前
13秒前
半夏发布了新的文献求助10
14秒前
糖卜里卜发布了新的文献求助10
14秒前
long lon er go完成签到,获得积分10
15秒前
16秒前
lbq发布了新的文献求助10
17秒前
soil应助电动泡泡机采纳,获得20
17秒前
17秒前
鑫搭发布了新的文献求助10
18秒前
XSCOOP发布了新的文献求助10
19秒前
20秒前
zyz完成签到,获得积分10
20秒前
SYLH应助mark33442采纳,获得10
20秒前
21秒前
玛琳卡迪马完成签到,获得积分10
22秒前
dyuephy完成签到,获得积分10
23秒前
515发布了新的文献求助20
23秒前
Joyj99完成签到,获得积分10
23秒前
贺同学完成签到,获得积分10
25秒前
piko11发布了新的文献求助10
26秒前
dghjk完成签到,获得积分10
29秒前
李小跳完成签到,获得积分10
31秒前
华仔应助热情平凡采纳,获得10
33秒前
李lailai完成签到,获得积分10
33秒前
科研通AI5应助yy采纳,获得10
35秒前
领导范儿应助515采纳,获得10
35秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801615
求助须知:如何正确求助?哪些是违规求助? 3347409
关于积分的说明 10333569
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681910
邀请新用户注册赠送积分活动 807800
科研通“疑难数据库(出版商)”最低求助积分说明 763921