CT radiomics based on the peritumoral adipose region of gastric adenocarcinoma for preoperative prediction of lymph node metastasis

医学 无线电技术 胃腺癌 腺癌 淋巴结转移 放射科 淋巴结 转移 病理 癌症 内科学
作者
Xuemei Ding,Haiying Zhou,Yue-su Wang,Jinming Cao,Jing Ou,Xiao Ming Zhang,Tian‐wu Chen
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:175: 111479-111479 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111479
摘要

Abstract

Purpose

To construct and validate CT radiomics model based on the peritumoral adipose region of gastric adenocarcinoma to preoperatively predict lymph node metastasis (LNM).

Methods and Methods

293 consecutive gastric adenocarcinoma patients receiving radical gastrectomy with lymph node dissection in two medical institutions were stratified into a development set (from Institution A, n = 237), and an external validation set (from Institution B, n = 56). Volume of interest of peritumoral adipose region was segmented on preoperative portal-phase CT images. The least absolute shrinkage and selection operator method and stepwise logistic regression were used to select features and build radiomics models. Manual classification was performed according to routine CT characteristics. A classifier incorporating the radiomics score and CT characteristics was developed for predicting LNM. Area under the receiver operating characteristic curve (AUC) was used to show discrimination between tumors with and without LNM, and the calibration curves and Brier score were used to evaluate the predictive accuracy. Violin plots were used to show the distribution of radiomics score.

Results

AUC values of radiomics model to predict LNM were 0.938, 0.905, and 0.872 in the training, internal test, and external validation sets, respectively, higher than that of manual classification (0.674, all P values < 0.01). The radiomics score of the positive LNM group were higher than that of the negative group in all sets (both P-values < 0.001). The classifier showed no improved predictive power compared with the radiomics signature alone with AUC values of 0.916 and 0.872 in the development and external validation sets, respectively. Multivariate analysis showed that radiomics score was an independent predictor.

Conclusions

Radiomics model based on peritumoral adipose region could be a useful approach for preoperative LNM prediction in gastric adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助tleeny采纳,获得10
刚刚
Orange应助科研痛采纳,获得10
刚刚
1秒前
1秒前
少年游发布了新的文献求助10
1秒前
Owen应助晨曦采纳,获得10
1秒前
忐忑的尔容完成签到,获得积分10
2秒前
开心的怜菡完成签到,获得积分10
2秒前
june发布了新的文献求助10
2秒前
三土发布了新的文献求助10
2秒前
滴滴滴滴发布了新的文献求助10
2秒前
搜集达人应助长风与海浪采纳,获得10
2秒前
酷炫抽屉完成签到 ,获得积分10
2秒前
顾矜应助微凉采纳,获得10
3秒前
落后的蚂蚁完成签到,获得积分10
3秒前
DDDD发布了新的文献求助10
4秒前
wd发布了新的文献求助10
4秒前
4秒前
微风正好发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
yyy应助科研小猪采纳,获得10
5秒前
5秒前
5秒前
小马甲应助忐忑的尔容采纳,获得10
5秒前
5秒前
万事可乐发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
6秒前
香蕉觅云应助fanboyz采纳,获得10
6秒前
Goodluck发布了新的文献求助10
6秒前
7秒前
erhao发布了新的文献求助10
7秒前
心仔完成签到,获得积分10
7秒前
bobo完成签到,获得积分10
8秒前
wa发布了新的文献求助10
8秒前
8秒前
无心的怜南完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006