Instrument-tissue Interaction Detection Framework for Surgical Video Understanding

计算机科学 代码段 最小边界框 帧(网络) 跳跃式监视 背景(考古学) 特征(语言学) 人工智能 班级(哲学) 计算机视觉 利用 人机交互 任务(项目管理) 特征提取 情报检索 图像(数学) 电信 古生物学 语言学 哲学 计算机安全 管理 生物 经济
作者
Wenjun Lin,Yan Hu,Huazhu Fu,Mingming Yang,Chin-Boon Chng,Ryo Kawasaki,Chee‐Kong Chui,Jiang Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2803-2813
标识
DOI:10.1109/tmi.2024.3381209
摘要

Instrument-tissue interaction detection task, which helps understand surgical activities, is vital for constructing computer-assisted surgery systems but with many challenges. Firstly, most models represent instrument-tissue interaction in a coarse-grained way which only focuses on classification and lacks the ability to automatically detect instruments and tissues. Secondly, existing works do not fully consider relations between intra-and inter-frame of instruments and tissues. In the paper, we propose to represent instrument-tissue interaction as ⟨instrument class, instrument bounding box, tissue class, tissue bounding box, action class⟩ quintuple and present an Instrument-Tissue Interaction Detection Network (ITIDNet) to detect the quintuple for surgery videos understanding. Specifically, we propose a Snippet Consecutive Feature (SCF) Layer to enhance features by modeling relationships of proposals in the current frame using global context information in the video snippet. We also propose a Spatial Corresponding Attention (SCA) Layer to incorporate features of proposals between adjacent frames through spatial encoding. To reason relationships between instruments and tissues, a Temporal Graph (TG) Layer is proposed with intra-frame connections to exploit relationships between instruments and tissues in the same frame and inter-frame connections to model the temporal information for the same instance. For evaluation, we build a cataract surgery video (PhacoQ) dataset and a cholecystectomy surgery video (CholecQ) dataset. Experimental results demonstrate the promising performance of our model, which outperforms other state-of-the-art models on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默艳完成签到,获得积分10
刚刚
吃肯德基发布了新的文献求助10
2秒前
温馨完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
3秒前
隐形曼青应助达利园采纳,获得10
3秒前
麋鹿完成签到 ,获得积分10
4秒前
5秒前
qzd完成签到,获得积分10
6秒前
CX完成签到,获得积分10
7秒前
vvvvvirus发布了新的文献求助10
7秒前
8秒前
9秒前
情怀应助iFan采纳,获得10
9秒前
asdfghjklhz完成签到,获得积分10
12秒前
无花果应助vvvvvirus采纳,获得10
13秒前
Ysheng发布了新的文献求助10
13秒前
14秒前
朴实山兰完成签到,获得积分10
14秒前
脑洞疼应助li采纳,获得10
15秒前
15秒前
ii完成签到,获得积分10
15秒前
脑洞疼应助会飞的yu采纳,获得10
16秒前
littlestone完成签到,获得积分10
18秒前
Hello应助林林林采纳,获得10
18秒前
19秒前
Benhnhk21发布了新的文献求助10
20秒前
苹果寻菱完成签到,获得积分20
20秒前
hua发布了新的文献求助20
22秒前
苹果寻菱发布了新的文献求助30
25秒前
李健的小迷弟应助小呆采纳,获得10
25秒前
大模型应助碧蓝香水采纳,获得10
28秒前
包容友灵完成签到,获得积分10
29秒前
王WW完成签到,获得积分10
30秒前
Hello应助Victoria采纳,获得30
31秒前
哈哈哈完成签到,获得积分10
32秒前
小蘑菇应助吃肯德基采纳,获得10
32秒前
包容友灵发布了新的文献求助10
32秒前
33秒前
xiaohuangya完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933476
求助须知:如何正确求助?哪些是违规求助? 3478478
关于积分的说明 11002099
捐赠科研通 3208683
什么是DOI,文献DOI怎么找? 1773162
邀请新用户注册赠送积分活动 860219
科研通“疑难数据库(出版商)”最低求助积分说明 797582