Machine Learning-Assisted Molecular Structure Embedding for Accurate Prediction of Emerging Contaminant Removal by Ozonation Oxidation

嵌入 化学 计算机科学 环境科学 生化工程 环境化学 人工智能 工程类
作者
Jin Yue,Hongjiao Pang,Renke Wei,Chengzhi Hu,Jiuhui Qu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (18): 9298-9311 被引量:2
标识
DOI:10.1021/acs.est.4c14193
摘要

Ozone has demonstrated high efficacy in depredating emerging contaminants (ECs) during drinking water treatment. However, traditional quantitative structure-activation relationship (QSAR) models often fall short in effectively normalizing and characterizing diverse molecular structures, thereby limiting their predictive accuracy for the removal of various ECs. This study uses embedded molecular structure vectors generated by a graph neural network (GNN), combined with functional group prompts, as inputs to a feedforward neural network. A data set of 28 ECs and 542 data points, representing diverse molecular structures and physiochemical properties, was built to predict the residual rate of ECs (REC) in ozonation oxidation. Compared to traditional QSAR models, the GNN-based molecular structure embedded methods significantly improve prediction accuracy. The resulting KANO-EC model achieved an R2 of 0.97 for REC, demonstrating its ability to capture complex structural features. Moreover, KANO-EC maintains exceptional interpretability, elucidating key functional groups (e.g., carbonyls, hydroxyls, aromatic rings, and amines) involved in the oxidation mechanism. This study presents the KANO-EC model as a novel approach for predicting the ozonation removal efficiency of current and potential ECs. The model also provides valuable insights for developing efficient control strategies for ensuring the long-term safety and sustainability of drinking water supplies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子发布了新的文献求助10
刚刚
简单面包完成签到,获得积分10
1秒前
Latono发布了新的文献求助10
1秒前
672完成签到,获得积分10
2秒前
生动从蓉给生动从蓉的求助进行了留言
3秒前
4秒前
kyou完成签到,获得积分10
4秒前
4秒前
4秒前
Lucas应助ying采纳,获得10
5秒前
Mercury完成签到,获得积分10
5秒前
云止完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
手帕很忙完成签到,获得积分10
8秒前
8秒前
ven发布了新的文献求助10
9秒前
龙在天涯完成签到,获得积分0
9秒前
活泼念双完成签到 ,获得积分10
11秒前
科研通AI6应助许译匀采纳,获得10
11秒前
Lucas应助守护星星采纳,获得10
11秒前
十三应助刘优秀采纳,获得10
12秒前
那无若发布了新的文献求助30
12秒前
星辰大海应助安心采纳,获得10
13秒前
weishen发布了新的文献求助10
13秒前
Latono发布了新的文献求助10
13秒前
高冷的呆呆鱼完成签到,获得积分10
13秒前
鳗鱼怡完成签到,获得积分10
15秒前
17秒前
qq发布了新的文献求助10
18秒前
swslgd发布了新的文献求助10
19秒前
大个应助Twistzz采纳,获得30
19秒前
张耘硕发布了新的文献求助10
19秒前
爆米花应助诚心茈采纳,获得10
20秒前
小马甲应助酷酷的静芙采纳,获得10
21秒前
22秒前
22秒前
Hello应助Harrison采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262905
求助须知:如何正确求助?哪些是违规求助? 4423643
关于积分的说明 13770428
捐赠科研通 4298469
什么是DOI,文献DOI怎么找? 2358507
邀请新用户注册赠送积分活动 1354777
关于科研通互助平台的介绍 1315989