Machine Learning-Assisted Molecular Structure Embedding for Accurate Prediction of Emerging Contaminant Removal by Ozonation Oxidation

嵌入 化学 计算机科学 环境科学 生化工程 环境化学 人工智能 工程类
作者
Jin Yue,Hongjiao Pang,Renke Wei,Chengzhi Hu,Jiuhui Qu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14193
摘要

Ozone has demonstrated high efficacy in depredating emerging contaminants (ECs) during drinking water treatment. However, traditional quantitative structure-activation relationship (QSAR) models often fall short in effectively normalizing and characterizing diverse molecular structures, thereby limiting their predictive accuracy for the removal of various ECs. This study uses embedded molecular structure vectors generated by a graph neural network (GNN), combined with functional group prompts, as inputs to a feedforward neural network. A data set of 28 ECs and 542 data points, representing diverse molecular structures and physiochemical properties, was built to predict the residual rate of ECs (REC) in ozonation oxidation. Compared to traditional QSAR models, the GNN-based molecular structure embedded methods significantly improve prediction accuracy. The resulting KANO-EC model achieved an R2 of 0.97 for REC, demonstrating its ability to capture complex structural features. Moreover, KANO-EC maintains exceptional interpretability, elucidating key functional groups (e.g., carbonyls, hydroxyls, aromatic rings, and amines) involved in the oxidation mechanism. This study presents the KANO-EC model as a novel approach for predicting the ozonation removal efficiency of current and potential ECs. The model also provides valuable insights for developing efficient control strategies for ensuring the long-term safety and sustainability of drinking water supplies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大白发布了新的文献求助10
刚刚
1秒前
1秒前
左君强发布了新的文献求助10
1秒前
1秒前
溧子呀发布了新的文献求助10
1秒前
求带完成签到 ,获得积分10
1秒前
For_winter完成签到,获得积分10
3秒前
雨声完成签到,获得积分10
3秒前
GQ发布了新的文献求助10
4秒前
后会无期完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
wzy完成签到,获得积分10
5秒前
11111发布了新的文献求助20
6秒前
安容天完成签到,获得积分10
6秒前
zhaoyuanqing发布了新的文献求助10
8秒前
77发布了新的文献求助10
9秒前
脑洞疼应助溧子呀采纳,获得10
9秒前
Arrebol完成签到,获得积分10
10秒前
慕青应助GQ采纳,获得10
11秒前
默默的紫菜关注了科研通微信公众号
11秒前
今后应助口外彭于晏采纳,获得10
11秒前
12秒前
阔达静曼完成签到 ,获得积分10
12秒前
13秒前
13秒前
大白完成签到,获得积分10
14秒前
14秒前
15秒前
李健的小迷弟应助ahhhh采纳,获得10
16秒前
Nora完成签到 ,获得积分10
18秒前
鱼小鱼发布了新的文献求助10
18秒前
Billy应助transition采纳,获得30
18秒前
ylf发布了新的文献求助10
18秒前
18秒前
kk发布了新的文献求助10
19秒前
LX完成签到,获得积分10
19秒前
伶俐安露发布了新的文献求助30
19秒前
pretty发布了新的文献求助10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866584
求助须知:如何正确求助?哪些是违规求助? 3409058
关于积分的说明 10661375
捐赠科研通 3133121
什么是DOI,文献DOI怎么找? 1728036
邀请新用户注册赠送积分活动 832666
科研通“疑难数据库(出版商)”最低求助积分说明 780381