去极化
生物物理学
化学
钙调蛋白
磷脂酰肌醇
激活剂(遗传学)
钾通道
磷脂酰肌醇4,5-二磷酸
胞浆
膜电位
结构生物学
生物
生物化学
信号转导
受体
酶
作者
Zhenni Yang,Yueming Zheng,Demin Ma,Long Wang,Jiatong Zhang,Tiefeng Song,Yong Wang,Yan Zhang,Fajun Nan,Nannan Su,Zhaobing Gao,Jiangtao Guo
标识
DOI:10.1073/pnas.2416738122
摘要
The human voltage-gated potassium channels KCNQ2, KCNQ3, and KCNQ5 can form homo- and heterotetrameric channels that are responsible for generating the neuronal M current and maintaining the membrane potential stable. Activation of KCNQ channels requires both the depolarization of membrane potential and phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Here, we report cryoelectron microscopy structures of the human KCNQ5–calmodulin (CaM) complex in the apo, PIP 2 -bound, and both PIP 2 - and the activator HN37-bound states in either a closed or an open conformation. In the closed conformation, a PIP 2 molecule binds in the middle of the groove between two adjacent voltage-sensing domains (VSDs), whereas in the open conformation, one additional PIP 2 binds to the interface of VSD and the pore domain, accompanying structural rearrangement of the cytosolic domain of KCNQ and CaM. The structures, along with electrophysiology analyses, reveal the two different binding modes of PIP 2 and elucidate the PIP 2 activation mechanism of KCNQ5.
科研通智能强力驱动
Strongly Powered by AbleSci AI