已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Treatment: The Role of Pharmacology, Genomics, and AI in Improving Patient Outcomes

药物基因组学 个性化医疗 精密医学 药物发现 医学 药品 药理学 生物信息学 生物 病理
作者
Fazil Ahmad
出处
期刊:Drug Development Research [Wiley]
卷期号:86 (3)
标识
DOI:10.1002/ddr.70093
摘要

ABSTRACT Recent advances in pharmacology are revolutionizing drug discovery and treatment strategies through personalized medicine, pharmacogenomics, and artificial intelligence (AI). The objective of the present study is to review the role of personalized medicine, pharmacogenomics, and AI‐based strategies in optimizing patient outcomes with improved drug efficacy and reduced side effects. A comprehensive review was performed to debate the utility of pharmacogenomics in the prediction of drug response, the role of AI in drug discovery, and the utility of personalized medicine in the clinic. This review highlights how drug discovery and treatment techniques are evolving with the aid of personalized medicine, pharmacogenomics, and AI. Personalized medicine makes the treatment fit the DNA pattern for higher efficacy and minimal side effects. Pharmacogenomics forecasts the action of a drug in terms of genetic difference. AI speeds up drug discovery to enhance the effectiveness and accuracy of finding and evaluating drug leads. Studies show that customized medicine charts therapy to an individual patient's individual genetic profile, resulting in better therapy. Pharmacogenomics facilitates precise drug selection by considering genetic variations, reducing adverse reactions. AI speeds up drug discovery by applying predictive modeling and data‐driven evaluation to propel optimized drug development pathways. Together, these advances are enabling more efficient and safer treatment practices across medical disciplines. The combination of pharmacology, genomics, and AI is revolutionizing contemporary healthcare through the personalization of treatments, improved drug safety, and therapeutic outcomes. The future of research should be on optimizing these techniques and overcoming ethical and regulatory issues to facilitate broader clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eason小川发布了新的文献求助10
4秒前
lune完成签到 ,获得积分10
9秒前
一只小羊发布了新的文献求助30
9秒前
静静完成签到,获得积分10
10秒前
凶狠的盛男完成签到 ,获得积分10
12秒前
19秒前
lyt完成签到,获得积分10
20秒前
20秒前
孙燕应助LANG采纳,获得10
22秒前
传奇3应助xsx采纳,获得10
22秒前
精明的问芙完成签到,获得积分10
23秒前
顾矜应助念812采纳,获得10
25秒前
vanshaw发布了新的文献求助30
27秒前
28秒前
31秒前
33秒前
33秒前
33秒前
大模型应助Eason小川采纳,获得10
34秒前
34秒前
35秒前
36秒前
37秒前
怕黑傲珊发布了新的文献求助10
38秒前
Zoey发布了新的文献求助10
39秒前
今天只做一件事应助leolee采纳,获得10
39秒前
Zoey发布了新的文献求助10
39秒前
Zoey发布了新的文献求助10
39秒前
Zoey发布了新的文献求助10
39秒前
HermitianZ发布了新的文献求助10
40秒前
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助30
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助10
40秒前
Zoey发布了新的文献求助10
40秒前
洋洋完成签到,获得积分10
41秒前
酷波er应助感动的念双采纳,获得10
42秒前
科研通AI5应助开朗的傲云采纳,获得10
42秒前
洋洋发布了新的文献求助10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833546
求助须知:如何正确求助?哪些是违规求助? 3376071
关于积分的说明 10491486
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704478
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775