已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A large-scale image-text dataset benchmark for farmland segmentation

水准点(测量) 比例(比率) 人工智能 分割 图像(数学) 计算机科学 模式识别(心理学) 图像分割 地理 地图学
作者
Chao Tao,D. Zhong,W. Mu,Zhuofei Du,Haiyang Wu
标识
DOI:10.5194/essd-2025-184
摘要

Abstract. Understanding and mastering the spatiotemporal characteristics of farmland is essential for accurate farmland segmentation. The traditional deep learning paradigm that solely relies on labeled data has limitations in representing the spatial relationships between farmland elements and the surrounding environment. It struggles to effectively model the dynamic temporal evolution and spatial heterogeneity of farmland. Language, as a structured knowledge carrier, can explicitly express the spatiotemporal characteristics of farmland, such as its shape, distribution, and surrounding environmental information. Therefore, a language-driven learning paradigm can effectively alleviate the challenges posed by the spatiotemporal heterogeneity of farmland. However, in the field of remote sensing imagery of farmland, there is currently no comprehensive benchmark dataset to support this research direction. To fill this gap, we introduced language-based descriptions of farmland and developed FarmSeg-VL dataset—the first fine-grained image-text dataset designed for spatiotemporal farmland segmentation. Firstly, this article proposed a semi-automatic annotation method that can accurately assign caption to each image, ensuring high data quality and semantic richness while improving the efficiency of dataset construction. Secondly, the FarmSeg-VL exhibits significant spatiotemporal characteristics. In terms of the temporal dimension, it covers all four seasons. In terms of the spatial dimension, it covers eight typical agricultural regions across China, with a total area of approximately 4,300 km2. In addition, in terms of captions, FarmSeg-VL covers rich spatiotemporal characteristics of farmland, including its inherent properties, phenological characteristics, spatial distribution, topographic and geomorphic features, and the distribution of surrounding environments. Finally, we present a performance analysis of vision language models and the deep learning models that rely solely on labels trained on the FarmSeg-VL, demonstrating its potential as a standard benchmark for farmland segmentation. The FarmSeg-VL dataset will be publicly released at https://doi.org/10.5281/zenodo.15099885 (Tao et al., 2025).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
Hello应助微笑的觅夏采纳,获得10
8秒前
Nicole完成签到 ,获得积分10
8秒前
左囧发布了新的文献求助10
11秒前
Muze发布了新的文献求助10
13秒前
味子橘完成签到 ,获得积分10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
chengqin完成签到 ,获得积分10
16秒前
17秒前
左囧完成签到,获得积分10
17秒前
孝艺完成签到 ,获得积分10
17秒前
22秒前
Spice完成签到 ,获得积分10
23秒前
bji完成签到,获得积分10
23秒前
24秒前
yhnsag完成签到,获得积分10
26秒前
26秒前
兰彻完成签到,获得积分10
26秒前
夏天发布了新的文献求助10
27秒前
喜气洋洋发布了新的文献求助10
30秒前
34秒前
李林完成签到,获得积分10
35秒前
喜气洋洋完成签到,获得积分10
37秒前
菜鸡5号完成签到,获得积分10
41秒前
hh发布了新的文献求助10
43秒前
43秒前
44秒前
小祁鱼完成签到,获得积分20
45秒前
小张完成签到 ,获得积分10
49秒前
DD立芬完成签到 ,获得积分10
50秒前
小祁鱼发布了新的文献求助30
50秒前
Bin_Liu发布了新的文献求助10
53秒前
不学习的牛蛙完成签到 ,获得积分10
56秒前
梅槿完成签到 ,获得积分10
56秒前
夏天发布了新的文献求助10
58秒前
香蕉觅云应助ShengQ采纳,获得10
59秒前
zxcvvbnm完成签到 ,获得积分10
59秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845393
求助须知:如何正确求助?哪些是违规求助? 3387703
关于积分的说明 10550352
捐赠科研通 3108399
什么是DOI,文献DOI怎么找? 1712551
邀请新用户注册赠送积分活动 824474
科研通“疑难数据库(出版商)”最低求助积分说明 774824