Reinforcement Learning-Based Control of a Hydraulic Press With Multiple Actuators

强化学习 执行机构 计算机科学 背景(考古学) 电液执行机构 控制工程 控制系统 控制(管理) 最优控制 任务(项目管理) 控制阀 控制理论(社会学) 人工智能 工程类 数学优化 数学 古生物学 系统工程 电气工程 生物
作者
Faried Makansi,Jingkai Huang,Katharina Schmitz
标识
DOI:10.1115/fpmc2023-110846
摘要

Abstract Methods of reinforcement learning are finding great success in solving complex decision and control tasks across different domains and applications. In the frame of control tasks, these methods seek to produce optimized controllers by gathering experience through interaction with the target system. Such controllers, which are often referred to as agents, can be generated without the need for rigorous physical modeling, parameter identification, and detailed knowledge of the system. Moreover, these approaches potentially allow to actuate several actuators with heterogenous control signal types, such as proportional valves and switching valves. Together with the generic interaction-based training concept, these approaches are promising tools for the control of complex hydraulic applications. The general applicability of reinforcement learning-based controllers for hydraulic control tasks has been shown in literature. However, several design options are not clearly investigated, especially regarding the selection of algorithms and the simultaneous coordination of multiple actuators. Therefore, this paper presents a study on different concepts for the reinforcement learning-based control of multiple actuators in a hydraulic press. Furthermore, solutions using a stochastic on-policy actor-critic algorithm (PPO) and a deterministic off-policy actor-critic method (TD3) are compared in this context. The results show that a setup with individual agents for each valve slightly outperforms solutions where one agent is used to control multiple valves. Moreover, the TD3 algorithm appears to yield better results on the given task than PPO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
莫歌完成签到 ,获得积分10
1秒前
3秒前
MCRong应助Dongcong采纳,获得20
3秒前
希望天下0贩的0应助MI采纳,获得10
4秒前
5秒前
科研通AI6应助qrt采纳,获得10
5秒前
liu发布了新的文献求助10
5秒前
优秀的离子键完成签到 ,获得积分10
6秒前
lzgy完成签到,获得积分10
6秒前
一周八颗蛋完成签到 ,获得积分10
7秒前
TIAN发布了新的文献求助10
8秒前
8秒前
爱低温的啊陈完成签到,获得积分10
9秒前
温柔的沉鱼完成签到,获得积分10
10秒前
加减乘除完成签到 ,获得积分10
12秒前
阮潜完成签到 ,获得积分10
13秒前
hu完成签到,获得积分10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得20
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Ang完成签到,获得积分10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
蜘猪侠zx应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
Huan完成签到 ,获得积分10
13秒前
呵呵应助科研通管家采纳,获得10
14秒前
NexusExplorer应助傲娇的梦寒采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
蜘猪侠zx应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
14秒前
iNk应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188