Interpatient Heartbeat Classification Using Modified Residual Attention Network With Two-Phase Training and Assistant Decision

心跳 人工智能 残余物 计算机科学 机器学习 深度学习 特征提取 模式识别(心理学) 算法 计算机安全
作者
Yanan Wang,Guohui Zhou,Cuiwei Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:9
标识
DOI:10.1109/tim.2022.3232646
摘要

State-of-the-art studies on automatic heartbeat classification have made efforts to improve supraventricular ectopic beat (SVEB) detection, but resulted in a low positive predictive value (PPV) of SVEB and poor performance of other categories under the interpatient paradigm. This article proposes a novel algorithm for heartbeat classification by the means of deep learning combined with feature extraction, which enhances the performance and can be applied to an automatic electrocardiogram (ECG) analysis. It is an improved residual attention network (IraNet) that combines attention module, residual inception block, and bidirectional long short-term memory (BiLSTM) layer to process single heartbeat segments directly. A two-phase training method is presented to change the weights in a planned way to deal with the imbalance of distinguishable features. An assistant decision for the deep learning-based model enhances the PPV of SVEB effectively. Under the interpatient paradigm on the Massachusetts Institute of Technology and Beth Israel Hosipital (MIT-BIH) arrhythmia database, the overall accuracy (Acc) of four classes achieves 0.9548. For SVEB class, the PPV is significantly improved to 0.7557 with the sensitivity (Sen) and an $F1$ score of 0.7392 and 0.7474, respectively. For ventricular ectopic beat (VEB) class, the Sen, PPV, and $F1$ score achieve 0.9575, 0.8500, and 0.9005, respectively, and the numbers are 0.9663, 0.9873, and 0.9767 for normal beat class. For fusion beat class, the numbers are 0.7964, 0.3597, and 0.4954, respectively. The proposed algorithm gets competitive results with the state-of-the-art studies, and there is a notable improvement in the detection of SVEB

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾馨慧发布了新的文献求助10
3秒前
科研通AI6应助圆锥香蕉采纳,获得30
5秒前
青柠苏打汽水完成签到,获得积分10
5秒前
魏凯源发布了新的文献求助10
6秒前
6秒前
6秒前
虚拟的若发布了新的文献求助10
7秒前
LiuHao发布了新的文献求助10
8秒前
yuyuyu完成签到,获得积分10
8秒前
10秒前
10秒前
lyx发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
徐菁发布了新的文献求助10
15秒前
丹丹发布了新的文献求助10
15秒前
Bake完成签到,获得积分10
15秒前
yh完成签到,获得积分10
16秒前
16秒前
zxf关闭了zxf文献求助
16秒前
如意枫叶发布了新的文献求助10
17秒前
诩阽完成签到,获得积分10
18秒前
18秒前
elysia发布了新的文献求助10
18秒前
Seeking完成签到,获得积分10
18秒前
情怀应助enen采纳,获得10
19秒前
19秒前
xuan发布了新的文献求助30
20秒前
21秒前
23秒前
YYYYYY发布了新的文献求助10
23秒前
苞米公主发布了新的文献求助10
23秒前
23秒前
小田完成签到,获得积分10
24秒前
LR完成签到,获得积分10
25秒前
张曼玉完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340