Abstract 5436: Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer

肿瘤微环境 免疫组织化学 乳腺癌 肿瘤浸润淋巴细胞 免疫系统 医学 多路复用 数字化病理学 间质细胞 H&E染色 淋巴结 病理 CD8型 癌症 癌症研究 生物 免疫学 内科学 生物信息学
作者
Zhi Huang,Anil V. Parwani,Kun Huang,Zaibo Li
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5436-5436 被引量:1
标识
DOI:10.1158/1538-7445.am2023-5436
摘要

Abstract Increasing implementation of whole slide image (WSI) and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, such as quantification of biomarkers, aids in diagnosis and detection of lymph node metastasis. However, predicting therapy response in cancer patients from pre-treatment histopathologic images remains a challenging task, limited by poor understanding of tumor immune microenvironment. In this study, we aimed to develop AI models using multi-source histopathologic images to predict neoadjuvant chemotherapy (NAC) response in HER2-positive (HER2+) breast cancers. First, pretreatment tumor tissues were stained with Hematoxylin and Eosin (H&E) and multiplex immunohistochemistry (IHC) including tumor immune microenvironment markers (PD-L1: immune checkpoint protein; CD8: marker for cytotoxic T-cells; and CD163: marker for type 2 macrophages). Next, we developed an AI-based pipeline to automatically extract histopathologic features from H&E and multiplex IHC WSIs. The pipeline included: A) H&E tissue segmentation based on DeepLabV3 model to generate stroma, tumor, and lymphocyte-rich regions. B) IHC marker segmentation to segment CD8, CD163, and PD-L1 stained cells. C) H&E and IHC non-rigid registration to match H&E and IHC images since they were stained from different levels of tissue. D) Image-based registration and segmentation histopathologic feature construction. A total of 36 histopathological features were constructed to represent tumor immune microenvironment characteristics such as ratios of PD-L1, CD8 and CD163 in tumoral, stromal or lymphocyte-rich regions. They were used to train machine learning (ML) models to predict NAC response in a training dataset with 62 HER2+ breast cancers (38 with complete and 24 with incomplete response). The ML model using logistic regression demonstrated the best performance with an area under curve (AUC) of 0.8975. We also tested ML models using pathologists-derived histopathologic features, but the best performed model showed an AUC of 0.7880. Finally, the developed logistic regression ML model was tested on an external validation dataset with 20 HER2+ breast cancers (10 with complete and 10 with incomplete response) and yielded an AUC of 0.9005. In summary, we described an automatic, accurate and interpretable AI-based pipeline to extract histopathologic features from H&E and IHC WSIs and then used these features to develop machine learning model to accurately predict NAC response in HER2+ breast cancers. The ML model using AI-based extracted features outperformed the model using features manually generated by pathologists. Citation Format: Zhi Huang, Anil V. Parwani, Kun Huang, Zaibo Li. Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5436.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助甜美的尔容采纳,获得10
1秒前
clyhg完成签到,获得积分10
1秒前
彭于晏应助刘成财采纳,获得10
1秒前
bible完成签到,获得积分10
2秒前
@∞发布了新的文献求助20
2秒前
双珠完成签到,获得积分10
2秒前
3秒前
翁sir完成签到,获得积分10
3秒前
5秒前
李倇仪完成签到,获得积分10
5秒前
5秒前
研友_qZAaGZ完成签到,获得积分10
5秒前
小晓完成签到,获得积分10
6秒前
玩命的一笑完成签到,获得积分20
6秒前
吞吞发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
瓜瓜完成签到,获得积分10
7秒前
ding应助干大事的小喽啰采纳,获得10
8秒前
cao发布了新的文献求助10
8秒前
9秒前
斯文败类应助乐乐乐宝采纳,获得10
9秒前
jun完成签到,获得积分10
9秒前
9秒前
科研通AI5应助舒适路人采纳,获得10
10秒前
Carry发布了新的文献求助10
10秒前
10秒前
Almond完成签到,获得积分10
10秒前
董dong完成签到,获得积分10
11秒前
东方巧曼完成签到,获得积分10
11秒前
yu发布了新的文献求助10
12秒前
猪猪hero发布了新的文献求助10
12秒前
xxx发布了新的文献求助10
13秒前
13秒前
折耳根料理大师完成签到,获得积分20
13秒前
跳跃的惮发布了新的文献求助10
13秒前
lucas发布了新的文献求助10
14秒前
Owen应助甜蜜的凌旋采纳,获得10
14秒前
今后应助karry采纳,获得30
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141