Semi-supervised Multi-view Prototype Learning with Motion Reconstruction for Moving Infrared Small Target Detection

计算机科学 计算机视觉 人工智能 运动(物理) 运动检测 红外线的 遥感 目标检测 模式识别(心理学) 地质学 光学 物理
作者
Weiwei Duan,Luping Ji,Jianghong Huang,Shengjia Chen,Shuang Peng,Sicheng Zhu,Mao Ye
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525648
摘要

Moving infrared small target detection is critical for various applications, e.g., remote sensing and military. Due to tiny target size and limited labeled data, accurately detecting targets is highly challenging. Currently, existing methods primarily focus on fully-supervised learning, which relies heavily on numerous annotated frames for training. However, annotating a large number of frames for each video is often expensive, time-consuming, and redundant, especially for low-quality infrared images. To break through traditional fully-supervised framework, we propose a new semi-supervised multi-view prototype (S2MVP) learning scheme that incorporates motion reconstruction. In our scheme, we design a bi-temporal motion perceptor based on bidirectional ConvGRU cells to effectively model the motion paradigms of targets by perceiving both forward and backward. Additionally, to explore the potential of unlabeled data, it generates the multi-view feature prototypes of targets as soft labels to guide feature learning by calculating cosine similarity. Imitating human visual system, it retains only the feature prototypes of recent frames. Moreover, it eliminates noisy pseudo-labels to enhance the quality of pseudo-labels through anomaly-driven pseudo-label filtering. Furthermore, we develop a target-aware motion reconstruction loss to provide additional supervision and prevent the loss of target details. To our best knowledge, the proposed S2MVP is the first work to utilize large-scale unlabeled video frames to detect moving infrared small targets. Although 10% labeled training samples are used, the experiments on three public benchmarks (DAUB, ITSDT-15K and IRDST) verify the superiority of our scheme compared to other methods. Source codes are available at https://github.com/UESTC-nnLab/S2MVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiawanren00完成签到,获得积分10
1秒前
一帆风顺发布了新的文献求助10
2秒前
orixero应助yuaaaann采纳,获得10
2秒前
4秒前
脑洞疼应助无所谓的啦采纳,获得10
5秒前
Ava应助无所谓的啦采纳,获得10
5秒前
dgq_81发布了新的文献求助10
5秒前
Owen应助无所谓的啦采纳,获得10
5秒前
斯文败类应助无所谓的啦采纳,获得10
5秒前
香蕉觅云应助无所谓的啦采纳,获得10
5秒前
研友_VZG7GZ应助无所谓的啦采纳,获得10
5秒前
FashionBoy应助无所谓的啦采纳,获得10
5秒前
烟花应助无所谓的啦采纳,获得10
5秒前
小蘑菇应助无所谓的啦采纳,获得10
6秒前
湖以应助无所谓的啦采纳,获得10
6秒前
超级语芹完成签到,获得积分20
7秒前
赘婿应助syf采纳,获得10
8秒前
9秒前
10秒前
风清扬发布了新的文献求助10
10秒前
jj发布了新的文献求助20
11秒前
control完成签到,获得积分10
13秒前
超级语芹发布了新的文献求助30
13秒前
PA应助XY采纳,获得10
14秒前
sunglow11完成签到,获得积分0
15秒前
bob完成签到,获得积分10
15秒前
dgq_81完成签到,获得积分10
16秒前
俞秋烟发布了新的文献求助10
16秒前
16秒前
16秒前
脑洞疼应助小星采纳,获得10
18秒前
19秒前
李健应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得30
20秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767