Discovery of target genes for fibromyalgia through bioinformatics analysis

纤维肌痛 生物信息学 计算生物学 基因 数据科学 计算机科学 医学 生物 遗传学 内科学
作者
Guo Mao,Botao Zhang
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House]
标识
DOI:10.1615/critreveukaryotgeneexpr.2025057263
摘要

Fibromyalgia (FM) is a chronic condition marked by widespread pain, fatigue, and other debilitating symptoms, affecting 2-4% of the population, predominantly women. Diagnosing FM is challenging due to its complex symptoms and lack of specific biomarkers. To characterize the gene expression profile in FM and identify target genes and potential biomarkers for FM. The RNA-sequencing data (RNA-seq) from FM patients and healthy controls were downloaded from the GEO database and analyzed in R to detect differentially expressed genes (DEGs). A weighted gene co-expression network analysis (WGCNA) was conducted on all genes to identify FM-associated modules. The intersection of DEGs with key module genes was used to build four machine learning models, with the top features from the support vector machine model tested for drug sensitivity to identify therapeutic targets. Expression of the top five genes was validated using real-time quantitative polymerase chain reaction and Western blotting. We identified 1599 DEGs between FM and healthy control. WGCNA revealed that 267 genes in the pink module were correlated with FM. The overlapped 76 key DEGs allow us to build machine-learning models that predict FM with high accuracy (area under the curve = 0.877). The top five genes that are contributing to the model were tested for potential drug targets. Drug sensitivity analysis showed a strong correlation between HAVCR1 and 10 tyrosine kinase inhibitors among the top gene-drug relationships. This study identified key FM-associated gene targets, demonstrating that their expression profiles can be used to predict FM risk. Our findings provide insights into the molecular mechanisms of FM and highlight potential therapeutic targets for improved FM treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
桐伶完成签到,获得积分10
1秒前
Lucas应助九九九采纳,获得10
2秒前
CipherSage应助康康采纳,获得10
3秒前
小马甲应助活泼的冷雁采纳,获得10
3秒前
科研通AI2S应助小奇葩采纳,获得10
4秒前
chensiqi发布了新的文献求助10
4秒前
4秒前
CipherSage应助拾一采纳,获得10
6秒前
妩媚的夜柳完成签到 ,获得积分10
6秒前
英姑应助赵成龙采纳,获得10
6秒前
ppg123发布了新的文献求助10
7秒前
ok完成签到,获得积分10
8秒前
徐佳达完成签到,获得积分10
11秒前
11秒前
心灵美的修洁完成签到 ,获得积分10
12秒前
传奇3应助rxgg采纳,获得10
12秒前
66完成签到 ,获得积分10
12秒前
CodeCraft应助柯柯采纳,获得10
12秒前
晨晨额呵呵完成签到,获得积分10
13秒前
Akim应助侃侃采纳,获得10
13秒前
one完成签到,获得积分10
14秒前
14秒前
14秒前
Lucas应助安详的沛菡采纳,获得10
15秒前
15秒前
16秒前
李爱国应助jj采纳,获得10
16秒前
小奇葩发布了新的文献求助10
17秒前
18秒前
拾一发布了新的文献求助10
19秒前
负责冰海发布了新的文献求助10
19秒前
赵成龙发布了新的文献求助10
20秒前
xiaozi完成签到 ,获得积分10
20秒前
20秒前
好奇宝宝完成签到,获得积分10
20秒前
向阳花完成签到,获得积分10
23秒前
24秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844493
求助须知:如何正确求助?哪些是违规求助? 3386880
关于积分的说明 10546518
捐赠科研通 3107344
什么是DOI,文献DOI怎么找? 1711747
邀请新用户注册赠送积分活动 824152
科研通“疑难数据库(出版商)”最低求助积分说明 774573