Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi‐Parametric MRI by Deep Learning

子宫内膜癌 医学 淋巴结 分割 磁共振成像 放射科 癌症 接收机工作特性 人工智能 计算机科学 内科学
作者
Yida Wang,Wei Liu,Yuanyuan Lu,Rennan Ling,Wenjing Wang,Shengyong Li,Feiran Zhang,Yan Ning,Xiaojun Chen,Guang Yang,He Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:6
标识
DOI:10.1002/jmri.29344
摘要

Background Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi‐parametric MRI (mpMRI) images. Purpose To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. Study Type Retrospective. Population Six hundred twenty‐one patients with histologically proven EC from two institutions, including 111 LNM‐positive and 168 LVSI‐positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. Field Strength/Sequence T2‐weighted imaging (T2WI), contrast‐enhanced T1WI (CE‐T1WI), and diffusion‐weighted imaging (DWI) were scanned with turbo spin‐echo, gradient‐echo, and two‐dimensional echo‐planar sequences, using either a 1.5 T or 3 T system. Assessment EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU‐Net model for automatic segmentation. A multi‐task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE‐T1WI, and DWI images as inputs. The performance of the model for LNM‐positive diagnosis was compared with those of three radiologists in the external test cohort. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. Results EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). Data Conclusion The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想干活应助YangSY采纳,获得10
刚刚
1秒前
飞翔的霸天哥应助ddd采纳,获得30
1秒前
不知道起什么好完成签到,获得积分20
2秒前
啦啦啦完成签到,获得积分10
2秒前
whisper完成签到,获得积分20
4秒前
Limbo发布了新的文献求助10
4秒前
FKVB_完成签到 ,获得积分10
4秒前
Paula_xr完成签到 ,获得积分10
4秒前
5秒前
小蘑菇应助柚子采纳,获得10
6秒前
6秒前
freedom313514完成签到,获得积分10
7秒前
苁蓉远志完成签到 ,获得积分10
8秒前
L7.完成签到,获得积分10
8秒前
8秒前
9秒前
Edward完成签到,获得积分10
9秒前
9秒前
阿Q完成签到,获得积分10
10秒前
2233完成签到,获得积分10
10秒前
lingyu发布了新的文献求助10
10秒前
LONG完成签到 ,获得积分10
10秒前
裴帅龙发布了新的文献求助10
10秒前
11秒前
toivy完成签到,获得积分10
11秒前
第八十六发布了新的文献求助10
11秒前
11秒前
LaTeXer重新开启了张晴文献应助
12秒前
sunnyside发布了新的文献求助30
12秒前
刘晓海完成签到,获得积分10
13秒前
Jasper应助1111采纳,获得10
13秒前
zzzzzzz发布了新的文献求助10
13秒前
科研通AI6应助onion采纳,获得10
13秒前
13秒前
13秒前
by完成签到,获得积分10
13秒前
WYao发布了新的文献求助10
14秒前
加油冲发布了新的文献求助10
14秒前
叶梓轩完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
全球及中国7nm节点及以下先进制程技术行业市场发展现状及发展前景研究报告(2025-2030版) 1000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4487901
求助须知:如何正确求助?哪些是违规求助? 3942454
关于积分的说明 12226526
捐赠科研通 3599185
什么是DOI,文献DOI怎么找? 1979336
邀请新用户注册赠送积分活动 1016214
科研通“疑难数据库(出版商)”最低求助积分说明 909375