Making Early and Accurate Deep Learning Predictions to Help Disadvantaged Individuals in Medical Crowdfunding

心理干预 弱势群体 捐赠 基线(sea) 营销 计算机科学 业务 经济 心理学 经济增长 政治学 精神科 法学
作者
Tong Wang,Fujie Jin,Yu Jeffrey Hu,Lu Feng,Yuan Cheng
出处
期刊:Production and Operations Management [Wiley]
被引量:1
标识
DOI:10.1177/10591478241231846
摘要

Medical crowdfunding is a popular channel for people seeking financial assistance to cover their medical expenses, allowing them to collect donations from a large number of donors. However, a mismatch between the supply and demand of donations creates large heterogeneity in the fundraising outcomes across medical crowdfunding campaigns, and such uncertainty can impede the timely planning of treatment for patients. Providing early and accurate forecasts for medical crowdfunding performance can better inform fundraisers and assist them in optimizing timely interventions to improve fundraising outcomes. In this study, we propose a new approach that effectively combines time-varying features and time-invariant features in a deep learning model, to provide dynamic predictions of fundraising outcomes. When compared with a comprehensive set of baseline models, our model consistently demonstrates higher predictive accuracy while requiring a shorter observation window of data, thus achieving both accurate and early prediction objectives. We further conduct a temporal clustering analysis to analyze the heterogeneous patterns in how the time-varying features relate to fundraising outcomes. In addition, we perform simulation analyses to demonstrate that interventions from fundraisers can significantly improve the fundraising performance of disadvantaged cases that are predicted to receive the lowest donation amounts, particularly when the interventions are implemented early. These findings show that our deep learning prediction model and the actionable insights can provide timely feedback to fundraisers and promote equal access to resources for all. Our proposed approach is applicable to various contexts, enabling effective processing of diverse sources of data and facilitating early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
冰魂应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
1秒前
星辰大海应助大虾采纳,获得10
2秒前
3秒前
shuqi发布了新的文献求助10
4秒前
Apei发布了新的文献求助10
4秒前
5秒前
5秒前
Gulu_完成签到 ,获得积分10
8秒前
Elvira完成签到,获得积分10
8秒前
研友_Zlepz8发布了新的文献求助10
9秒前
听闻发布了新的文献求助10
10秒前
山茶发布了新的文献求助10
11秒前
11秒前
SciGPT应助shuqi采纳,获得10
11秒前
12秒前
悲凉的翼完成签到 ,获得积分10
14秒前
小二郎应助听闻采纳,获得10
14秒前
15秒前
月夕发布了新的文献求助30
15秒前
16秒前
17秒前
lll完成签到 ,获得积分10
18秒前
19秒前
大虾发布了新的文献求助10
19秒前
油条发布了新的文献求助20
20秒前
丹丹给丹丹的求助进行了留言
20秒前
Bebeans应助洁净的易梦采纳,获得30
21秒前
科研通AI5应助0720jy采纳,获得10
22秒前
李怡怡发布了新的文献求助30
23秒前
24秒前
25秒前
夭夭发布了新的文献求助20
27秒前
27秒前
32秒前
慕青应助热闹的冬天采纳,获得10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110