Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sevenhill应助机智的明雪采纳,获得10
1秒前
1秒前
yhh发布了新的文献求助10
1秒前
1秒前
yy完成签到 ,获得积分10
2秒前
汤文敬完成签到,获得积分10
2秒前
机智半双完成签到,获得积分10
3秒前
3秒前
wlx完成签到,获得积分10
4秒前
Sweet发布了新的文献求助30
4秒前
4秒前
爆米花应助2765604466采纳,获得10
4秒前
cc关闭了cc文献求助
5秒前
Rangi发布了新的文献求助10
5秒前
yangz发布了新的文献求助10
5秒前
缓慢冷风完成签到,获得积分10
5秒前
kyt17878完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
不安的墨镜完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
Dengjia发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
8秒前
8秒前
爱你沛沛完成签到 ,获得积分10
8秒前
火星上的海亦完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
Owen应助七七采纳,获得10
11秒前
白江虎发布了新的文献求助10
11秒前
???完成签到,获得积分10
12秒前
赤恩发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535968
求助须知:如何正确求助?哪些是违规求助? 4623760
关于积分的说明 14588969
捐赠科研通 4564340
什么是DOI,文献DOI怎么找? 2501618
邀请新用户注册赠送积分活动 1480473
关于科研通互助平台的介绍 1451779