Machine Learning Assisted Statistical Variation Analysis of Voltage Gated Spin Orbit Torque Magnetic Tunnel Junction

扭矩 变化(天文学) 电压 轨道(动力学) 自旋(空气动力学) 电气工程 物理 凝聚态物理 计算机科学 工程类 机械工程 航空航天工程 天文 量子力学
作者
Alok Kumar Shukla,Hemkant Nehete,Sandeep Soni,Partha Kaushik,Brajesh Kumar Kaushik
标识
DOI:10.1109/nmdc57951.2023.10343901
摘要

In the semiconductor industry, spintronic technology has gained significant attention in the new era due to its compatibility with CMOS design. Among the promising spintronic devices, the voltage-gated spin-orbit torque magnetic tunnel junction (VGSOT-MTJ) stands out, offering the potential to overcome limitations found in other spintronic devices like spin-transfer torque (STT) and spin-orbit torque (SOT) magnetic tunnel junctions. However, the performance and reliability of VGSOT-MTJ can be influenced by variations in critical device parameters. This work investigates the variability of device characteristics in VGSOT-MTJ and proposes an innovative framework assisted by machine learning (ML) to streamline the technological pathfinding process. The proposed framework leverages three regression models based on machine learning techniques: K-nearest neighbors (KNN), random forest, and neural network regressors. Each model's effectiveness is assessed by evaluating metrics such as mean error, R2 score, root mean square error (RMSE), and inference time. It is observed that the random forest regressor outperforms neural network regressor and K-nearest regressor model in terms of mean error, R2 score, and RMSE. Our ML assisted approach provided a more accurate and efficient analysis, with R2 scores of 0.99. Furthermore, significant improvement in prediction time is observed as compared to the SPICE simulation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助吕小布采纳,获得10
1秒前
一朵巴巴完成签到,获得积分10
1秒前
在水一方应助不吃别夹采纳,获得10
2秒前
3秒前
3秒前
xiaohongmao完成签到,获得积分10
3秒前
爽歪歪完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
7秒前
小马甲应助limof采纳,获得10
9秒前
9秒前
9秒前
哈哈哈完成签到 ,获得积分10
9秒前
乐予完成签到,获得积分10
10秒前
研友_LMNjkn完成签到 ,获得积分10
12秒前
ShawnLyu应助bibgyueli采纳,获得10
13秒前
科研通AI5应助阿文采纳,获得20
15秒前
15秒前
17秒前
善良雅柏发布了新的文献求助10
19秒前
limof完成签到,获得积分10
20秒前
Mayer1234088完成签到,获得积分10
20秒前
害羞小虾米完成签到,获得积分10
20秒前
wangfang0228完成签到 ,获得积分10
21秒前
DODO完成签到,获得积分10
22秒前
Hezzzz完成签到,获得积分10
22秒前
limof发布了新的文献求助10
23秒前
Young完成签到,获得积分10
24秒前
所所应助DDDD采纳,获得30
24秒前
康康XY完成签到 ,获得积分10
26秒前
27秒前
28秒前
wly9399375发布了新的文献求助10
32秒前
您的慈父完成签到,获得积分20
32秒前
tianjiu发布了新的文献求助10
33秒前
Willy完成签到,获得积分10
33秒前
老西瓜完成签到,获得积分10
34秒前
梁筱筱完成签到 ,获得积分10
34秒前
344061512完成签到 ,获得积分10
37秒前
luna完成签到,获得积分10
39秒前
甜橙完成签到 ,获得积分10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320