Multi-Dimensional Fragmentomics Enables Early and Accurate Detection of Colorectal Cancer

结直肠癌 癌症 医学 肿瘤科 内科学
作者
Yuepeng Cao,Nannan Wang,Xuxiaochen Wu,Wanxiangfu Tang,Hua Bao,Chengshuai Si,Peng Shao,Dongzheng Li,Xin Zhou,Dongqin Zhu,Shanshan Yang,Fufeng Wang,Guoqing Su,Ke Wang,Qifan Wang,Yao Zhang,Qiangcheng Wang,Dongsheng Yu,Qian Jiang,俊一 久保
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3286-3295 被引量:5
标识
DOI:10.1158/0008-5472.can-23-3486
摘要

Abstract Colorectal cancer is frequently diagnosed in advanced stages, highlighting the need for developing approaches for early detection. Liquid biopsy using cell-free DNA (cfDNA) fragmentomics is a promising approach, but the clinical application is hindered by complexity and cost. This study aimed to develop an integrated model using cfDNA fragmentomics for accurate, cost-effective early-stage colorectal cancer detection. Plasma cfDNA was extracted and sequenced from a training cohort of 360 participants, including 176 patients with colorectal cancer and 184 healthy controls. An ensemble stacked model comprising five machine learning models was employed to distinguish patients with colorectal cancer from healthy controls using five cfDNA fragmentomic features. The model was validated in an independent cohort of 236 participants (117 patients with colorectal cancer and 119 controls) and a prospective cohort of 242 participants (129 patients with colorectal cancer and 113 controls). The ensemble stacked model showed remarkable discriminatory power between patients with colorectal cancer and controls, outperforming all base models and achieving a high area under the receiver operating characteristic curve of 0.986 in the validation cohort. It reached 94.88% sensitivity and 98% specificity for detecting colorectal cancer in the validation cohort, with sensitivity increasing as the cancer progressed. The model also demonstrated consistently high accuracy in within-run and between-run tests and across various conditions in healthy individuals. In the prospective cohort, it achieved 91.47% sensitivity and 95.58% specificity. This integrated model capitalizes on the multiplex nature of cfDNA fragmentomics to achieve high sensitivity and robustness, offering significant promise for early colorectal cancer detection and broad patient benefit. Significance: The development of a minimally invasive, efficient approach for early colorectal cancer detection using advanced machine learning to analyze cfDNA fragment patterns could expedite diagnosis and improve treatment outcomes for patients. See related commentary by Rolfo and Russo, p. 3128
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jing发布了新的文献求助10
1秒前
乐观的问兰完成签到 ,获得积分10
1秒前
1秒前
3秒前
乔一乔完成签到,获得积分10
5秒前
陈补天完成签到 ,获得积分10
7秒前
7秒前
liu完成签到,获得积分10
9秒前
11秒前
13秒前
13秒前
恶恶么v完成签到,获得积分10
15秒前
火辣蛤蟆完成签到,获得积分10
16秒前
刘一安发布了新的文献求助10
17秒前
18秒前
ybmdyr发布了新的文献求助10
19秒前
风中琦完成签到 ,获得积分10
19秒前
wassermelonen应助Lny采纳,获得20
19秒前
赘婿应助火星上初柳采纳,获得10
21秒前
Siavy完成签到,获得积分10
21秒前
风趣凝海发布了新的文献求助10
23秒前
24秒前
茉莉园完成签到,获得积分10
26秒前
wxy完成签到,获得积分10
26秒前
留胡子的火完成签到,获得积分10
26秒前
老实紫萱应助追寻的蓝血采纳,获得10
26秒前
所所应助Damon采纳,获得10
27秒前
27秒前
路路通完成签到,获得积分10
28秒前
bkagyin应助ybmdyr采纳,获得10
29秒前
茶包完成签到,获得积分10
29秒前
圆头圆关注了科研通微信公众号
30秒前
31秒前
31秒前
niudayun完成签到 ,获得积分10
31秒前
33秒前
淡定丹琴发布了新的文献求助10
35秒前
赵赵完成签到,获得积分10
35秒前
HGD发布了新的文献求助10
35秒前
光速蜗牛完成签到,获得积分10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4168602
求助须知:如何正确求助?哪些是违规求助? 3704051
关于积分的说明 11689928
捐赠科研通 3391070
什么是DOI,文献DOI怎么找? 1859783
邀请新用户注册赠送积分活动 920032
科研通“疑难数据库(出版商)”最低求助积分说明 832543