Interatomic potential of the MgAl2O4/Al interface and its application in strengthening mechanisms

材料科学 接口(物质) 原子间势 化学 复合材料 分子动力学 计算化学 毛细管数 毛细管作用
作者
Aiqiong Pan,Hongquan Song,Wenyan Wang,Hui Zhang,Hao Shiming,Jingpei Xie,Aiqin Wang
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:32: 67-76 被引量:4
标识
DOI:10.1016/j.jmrt.2024.07.124
摘要

MgAl2O4 ceramics possess outstanding mechanical properties, making them promising for use as reinforcing or interfacial modulating phase in Al-based metal composites. The challenge lies in the insufficient interatomic potential parameters to accurately characterize the MgAl2O4/Al interfacial interactions, which hampers a detailed understanding of the interfacial strengthening mechanisms at the atomic level. Since the pair potential satisfies the requirements for computational efficiency and accuracy, it has been widely used for investigating the interfacial properties of composite materials. In this study, the interatomic potential parameters for Al–Mg and Al–Al bonds were derived from Buckingham potential, while those for Al–O bonds were obtained from Morse potential via first principles calculations. The uniaxial tensile mechanical properties and interface-dislocation strengthening mechanisms of MgAl2O4/Al interface configuration were explored through molecular dynamics simulations. The analyses reveal that the strength enhancement of the MgAl2O4/Al interface is due to the generation of a large number of immovable 1/6<110> stair-rod dislocations therein. The thickness of MgAl2O4 layer significantly influences the mechanical properties. Below a thickness of 20 Å, the presence of movable dislocations reduces the strengthening effect. Conversely, increasing the thickness of MgAl2O4 encourages the emergence of immovable dislocations and increases the flow stress, while the corresponding yield strain decreases. These insights open up new prospects in the development of aluminum metal matrix composites with enhanced performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助chenzq采纳,获得10
刚刚
可爱的函函应助阔达锦程采纳,获得10
刚刚
1秒前
小木林发布了新的文献求助10
1秒前
1秒前
好好吃饭发布了新的文献求助10
1秒前
学术神经完成签到,获得积分10
2秒前
2秒前
2秒前
crk完成签到,获得积分10
2秒前
上官若男应助yyc采纳,获得20
2秒前
香蕉觅云应助小于采纳,获得10
3秒前
有风来发布了新的文献求助10
3秒前
苹果白凡发布了新的文献求助10
3秒前
3秒前
法不拉底完成签到,获得积分10
4秒前
4秒前
林qiuxiang发布了新的文献求助10
4秒前
充电宝应助snow采纳,获得30
4秒前
悲凉的强炫完成签到,获得积分10
5秒前
大气石头完成签到,获得积分10
5秒前
熊大发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zsyhcl应助要减肥的阿宇采纳,获得10
6秒前
珂儿完成签到,获得积分10
6秒前
科研通AI6应助luna采纳,获得30
6秒前
爱美丽发布了新的文献求助30
7秒前
xxts完成签到 ,获得积分10
7秒前
秋风之墩发布了新的文献求助10
7秒前
学术神经发布了新的文献求助10
7秒前
丘比特应助愉快的隶采纳,获得10
7秒前
8秒前
Felix发布了新的文献求助30
8秒前
johnzealot发布了新的文献求助10
8秒前
陈牛逼发布了新的文献求助10
8秒前
好运发布了新的文献求助30
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066